文件名称:ALinearAlgorithmwithHighAccuracyforEstimatingFunda
介绍说明--下载内容均来自于网络,请自行研究使用
通过引入与余差有关的代价函数,给出了一种高精度估计基础矩阵的线性算法——加权平移算法.首先
将原始输入数据加权,计算加权后数据的重心坐标,将坐标原点平移到该重心坐标,再作归一化处理.然后用8点
算法求出基础矩阵F阵的8个参数,实现了F阵的高精度估计.实验结果表明,此算法具有良好的鲁棒性,且余差
和对极距离都小于其他线性算法,提高了基础矩阵的精度. -Through the introduction of residual error associated with the cost function, gives a high-precision estimates based on linear matrix algorithm- weighted translation algorithm. First of all, the original input data weighted to calculate the weighted center of gravity after the data coordinates, will be moved to the coordinates origin Ping The center of gravity coordinates, re-normalized. and then use the 8 point algorithm to derive the fundamental matrix F array eight parameters, the achievement of the F array of high-precision estimates. The experimental results show that this algorithm has good robustness, and residual error and the distance is less than most other linear algorithms, improve the accuracy of the fundamental matrix.
将原始输入数据加权,计算加权后数据的重心坐标,将坐标原点平移到该重心坐标,再作归一化处理.然后用8点
算法求出基础矩阵F阵的8个参数,实现了F阵的高精度估计.实验结果表明,此算法具有良好的鲁棒性,且余差
和对极距离都小于其他线性算法,提高了基础矩阵的精度. -Through the introduction of residual error associated with the cost function, gives a high-precision estimates based on linear matrix algorithm- weighted translation algorithm. First of all, the original input data weighted to calculate the weighted center of gravity after the data coordinates, will be moved to the coordinates origin Ping The center of gravity coordinates, re-normalized. and then use the 8 point algorithm to derive the fundamental matrix F array eight parameters, the achievement of the F array of high-precision estimates. The experimental results show that this algorithm has good robustness, and residual error and the distance is less than most other linear algorithms, improve the accuracy of the fundamental matrix.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
一种高精度估计的基础矩阵的线性算法.pdf