文件名称:EM_GM
- 所属分类:
- matlab例程
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 3kb
- 下载次数:
- 0次
- 提 供 者:
- Shaoq******
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
% EM algorithm for k multidimensional Gaussian mixture estimation
%
% Inputs:
% X(n,d) - input data, n=number of observations, d=dimension of variable
% k - maximum number of Gaussian components allowed
% ltol - percentage of the log likelihood difference between 2 iterations ([] for none)
% maxiter - maximum number of iteration allowed ([] for none)
% pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none)
% Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none)
%
% Ouputs:
% W(1,k) - estimated weights of GM
% M(d,k) - estimated mean vectors of GM
% V(d,d,k) - estimated covariance matrices of GM
% L - log likelihood of estimates
%- EM algorithm for k multidimensional Gaussian mixture estimation Inputs: X (n, d)- input data, n = number of observations, d = dimension of variable k- maximum number of Gaussian components allowed ltol- percentage of the log likelihood difference between 2 iterations ([] for none) maxiter- maximum number of iteration allowed ([] for none) pflag- 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) Init- structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) Ouputs: W (1, k)- estimated weights of GM M (d, k)- estimated mean vectors of GM V (d, d, k)- estimated covariance matrices of GM L- log likelihood of estimates
%
% Inputs:
% X(n,d) - input data, n=number of observations, d=dimension of variable
% k - maximum number of Gaussian components allowed
% ltol - percentage of the log likelihood difference between 2 iterations ([] for none)
% maxiter - maximum number of iteration allowed ([] for none)
% pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none)
% Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none)
%
% Ouputs:
% W(1,k) - estimated weights of GM
% M(d,k) - estimated mean vectors of GM
% V(d,d,k) - estimated covariance matrices of GM
% L - log likelihood of estimates
%- EM algorithm for k multidimensional Gaussian mixture estimation Inputs: X (n, d)- input data, n = number of observations, d = dimension of variable k- maximum number of Gaussian components allowed ltol- percentage of the log likelihood difference between 2 iterations ([] for none) maxiter- maximum number of iteration allowed ([] for none) pflag- 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) Init- structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) Ouputs: W (1, k)- estimated weights of GM M (d, k)- estimated mean vectors of GM V (d, d, k)- estimated covariance matrices of GM L- log likelihood of estimates
相关搜索: maximum
likelihood
gaussian
mixture
em
algorithm
EM
difference
of
gaussian
EM
GM
EM
matlab
GM
matlab
covariance
GM
likelihood
gaussian
mixture
em
algorithm
EM
difference
of
gaussian
EM
GM
EM
matlab
GM
matlab
covariance
GM
(系统自动生成,下载前可以参看下载内容)
下载文件列表
EM_GM.m