文件名称:Richardson
介绍说明--下载内容均来自于网络,请自行研究使用
里查得森(Richardson)法解偏微分方程的程序。解的是定步长的抛物型偏微分方程:
du/dx - a * d2u/dx2 = 0
在程序中可以更改 a 的值以实现不同系数的解。由于它是一种显式格式,解的结果不稳定
在Matlab7下面运行发现竟然有一些值达到十的几十次方,这是算法本身决定的。不是程序有错误-Richard Anderson (Richardson) Solving partial differential equations procedures. Solution is scheduled to step parabolic partial differential equation: du/dx- a* d2u/dx2 = 0 in the procedure can be changed in order to realize the value of a different coefficient of the solution. Because it is an explicit format, the result of instability in the solution of the following Matlab7 running even found some value reached ten dozens of parties, this is the decision algorithm itself. Not a procedural error
du/dx - a * d2u/dx2 = 0
在程序中可以更改 a 的值以实现不同系数的解。由于它是一种显式格式,解的结果不稳定
在Matlab7下面运行发现竟然有一些值达到十的几十次方,这是算法本身决定的。不是程序有错误-Richard Anderson (Richardson) Solving partial differential equations procedures. Solution is scheduled to step parabolic partial differential equation: du/dx- a* d2u/dx2 = 0 in the procedure can be changed in order to realize the value of a different coefficient of the solution. Because it is an explicit format, the result of instability in the solution of the following Matlab7 running even found some value reached ten dozens of parties, this is the decision algorithm itself. Not a procedural error
(系统自动生成,下载前可以参看下载内容)
下载文件列表
F_Richardson.m
说明.txt
说明.txt