文件名称:pailie
介绍说明--下载内容均来自于网络,请自行研究使用
排列问题
M个1,N个0的排列(高效率版)
排列数为:c(m+n,n)
对n个0,m个1,我的想法是这样的:
每个排列可以分三段:
全0列,全1列, 子问题列
设各段长:r,s,t .子问题列就是 (n,m) = (n-r,m-s),其中0<=r<=n,s=1-problem with M-1, N 0 is the order (high-efficiency version) with a few : c (m n, n) of n 0, m one, I think is this : each can be arranged IPP : 0 whole, a whole, the sub- problems out of the long established : r, s, t.- is the question of (n, m) = (n-r, m-s), where 0
M个1,N个0的排列(高效率版)
排列数为:c(m+n,n)
对n个0,m个1,我的想法是这样的:
每个排列可以分三段:
全0列,全1列, 子问题列
设各段长:r,s,t .子问题列就是 (n,m) = (n-r,m-s),其中0<=r<=n,s=1-problem with M-1, N 0 is the order (high-efficiency version) with a few : c (m n, n) of n 0, m one, I think is this : each can be arranged IPP : 0 whole, a whole, the sub- problems out of the long established : r, s, t.- is the question of (n, m) = (n-r, m-s), where 0
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
排列问题 | ||
........\c(n | k).txt | |
........\M个1 | N个0的排列(DFS版).txt | |
........\M个1 | N个0的排列(高效率版).txt.txt | |
........\排列.txt | ||
........\无相同元素 提交版.txt |