文件名称:t2_5
介绍说明--下载内容均来自于网络,请自行研究使用
本题采用的计算方法为:主要用Jacobi迭代和Gauss-Seidel迭代解线性方程组。
Jacobi迭代算法思路:由方程组 ,使等式左端仅保留向量 ,其他一概放到右端,将 代入上式右端,便可(按顺序逐行)进行计算得到 。
Gauss-Seidel迭代和Jacobi迭代不同的是先计算第一式得到 ,用此数再参与第二式的右端的计算,依次类推。
-that the use of the method of calculating : main Jacobi iteration and the Gauss- Seidel iterative solution of linear equations. Jacobi iterative algorithm ideas : equations, so that the equation extreme retain only vector, into subguadratic else. will be incorporated into the on-subguadratic can (in order Progressive) calculated. Gauss- Seidel iterative and Jacobi iteration is different-first to be calculated first, used again in the second for the right side of the ceremony, followed by analogy.
Jacobi迭代算法思路:由方程组 ,使等式左端仅保留向量 ,其他一概放到右端,将 代入上式右端,便可(按顺序逐行)进行计算得到 。
Gauss-Seidel迭代和Jacobi迭代不同的是先计算第一式得到 ,用此数再参与第二式的右端的计算,依次类推。
-that the use of the method of calculating : main Jacobi iteration and the Gauss- Seidel iterative solution of linear equations. Jacobi iterative algorithm ideas : equations, so that the equation extreme retain only vector, into subguadratic else. will be incorporated into the on-subguadratic can (in order Progressive) calculated. Gauss- Seidel iterative and Jacobi iteration is different-first to be calculated first, used again in the second for the right side of the ceremony, followed by analogy.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
t2_5.cpp