文件名称:numericalalgorithmMATLAB
介绍说明--下载内容均来自于网络,请自行研究使用
为配套王能超版本数值分析简明教程编写,方便学生教师演示!-for supporting Wang Chao version of the Concise Guide to Numerical Analysis prepared to facilitate students to teachers demo!
相关搜索: HMM
(系统自动生成,下载前可以参看下载内容)
下载文件列表
新建文件夹
..........\jacobi and gauss and SOR迭代法
..........\..............................\expfj.asv
..........\..............................\gauss.asv
..........\..............................\gauss.m
..........\..............................\jacobi.asv
..........\..............................\jacobi1.m
..........\..............................\lu1.m
..........\..............................\SOR.asv
..........\..............................\SOR.m
..........\..............................\说明.txt
..........\LU(Crout)分解法并直接求得方程组的解
..........\...................................\Crout.m
..........\LU(Doolittle)分解法并直接求得方程组的解
..........\.......................................\Doolittle.asv
..........\.......................................\Doolittle.m
..........\二分法
..........\......\xia328.m
..........\弦截法
..........\......\xjf.asv
..........\......\xjf.m
..........\微分方程
..........\........\Euler_b.m
..........\........\Euler_c.m
..........\........\Euler_d.m
..........\........\Euler_f.m
..........\........\Runge_Kutta4.m
..........\拉格朗日插值
..........\............\lagrange.m
..........\............\xia322.m
..........\............\xia3221.m
..........\............\zlp1.asv
..........\............\zlp1.m
..........\............\说明.txt
..........\拟合
..........\....\xia324.asv
..........\....\xia324.m
..........\....\xia3241.asv
..........\....\xia3241.m
..........\....\xia3242.m
..........\....\说明.txt
..........\插值多项式
..........\..........\Lagrange.m
..........\..........\line_int_wise.m
..........\..........\Newton_int.m
..........\数值分析
..........\........\200411011113(1)夏飞佳
..........\........\.....................\xia1.m
..........\........\.....................\xia2.asv
..........\........\.....................\xia2.m
..........\........\.....................\xia3.m
..........\........\.....................\xia4.m
..........\........\.....................\xia5.asv
..........\........\.....................\xia5.m
..........\........\.....................\xiafeijia.m
..........\........\.....................\xiafeijia3.fig
..........\........\jacobi and gauss and SOR迭代法
..........\........\..............................\expfj.asv
..........\........\..............................\gauss.asv
..........\........\..............................\gauss.m
..........\........\..............................\jacobi.asv
..........\........\..............................\jacobi1.m
..........\........\..............................\lu1.m
..........\........\..............................\SOR.asv
..........\........\..............................\SOR.m
..........\........\..............................\说明.txt
..........\........\LU(Crout)分解法并直接求得方程组的解
..........\........\...................................\Crout.m
..........\........\LU(Doolittle)分解法并直接求得方程组的解
..........\........\.......................................\Doolittle.asv
..........\........\.......................................\Doolittle.m
..........\........\Newton_Cotes系数
..........\........\................\Newton_Cotes.asv
..........\........\................\Newton_Cotes.m
..........\........\n的阶乘
..........\........\.......\jie.m
..........\........\.......\pan.m
..........\........\.......\说明.txt
..........\........\一般的Simpson法求函数的积分(要输入在区间n等分)
..........\........\..............................................\Simpson.asv
..........\........\..............................................\Simpson.m
..........\........\一般的梯形法求函数的积分(要输入区间的n等分)
..........\........\...........................................\tixing.m
..........\........\上机作业
..........\........\........\4.21.doc
..........\........\........\4.doc
..........\........\........\jie.doc
..........\........\........\复件 4.21.doc
..........\........\........\打印2.doc
..........\........\........\数值计算2.doc
..........\........\........\数值计算题目1.doc
..........\........\........\新建 Microsoft Word 文档.doc
..........\........\二分法
..........\........\......\x
..........\jacobi and gauss and SOR迭代法
..........\..............................\expfj.asv
..........\..............................\gauss.asv
..........\..............................\gauss.m
..........\..............................\jacobi.asv
..........\..............................\jacobi1.m
..........\..............................\lu1.m
..........\..............................\SOR.asv
..........\..............................\SOR.m
..........\..............................\说明.txt
..........\LU(Crout)分解法并直接求得方程组的解
..........\...................................\Crout.m
..........\LU(Doolittle)分解法并直接求得方程组的解
..........\.......................................\Doolittle.asv
..........\.......................................\Doolittle.m
..........\二分法
..........\......\xia328.m
..........\弦截法
..........\......\xjf.asv
..........\......\xjf.m
..........\微分方程
..........\........\Euler_b.m
..........\........\Euler_c.m
..........\........\Euler_d.m
..........\........\Euler_f.m
..........\........\Runge_Kutta4.m
..........\拉格朗日插值
..........\............\lagrange.m
..........\............\xia322.m
..........\............\xia3221.m
..........\............\zlp1.asv
..........\............\zlp1.m
..........\............\说明.txt
..........\拟合
..........\....\xia324.asv
..........\....\xia324.m
..........\....\xia3241.asv
..........\....\xia3241.m
..........\....\xia3242.m
..........\....\说明.txt
..........\插值多项式
..........\..........\Lagrange.m
..........\..........\line_int_wise.m
..........\..........\Newton_int.m
..........\数值分析
..........\........\200411011113(1)夏飞佳
..........\........\.....................\xia1.m
..........\........\.....................\xia2.asv
..........\........\.....................\xia2.m
..........\........\.....................\xia3.m
..........\........\.....................\xia4.m
..........\........\.....................\xia5.asv
..........\........\.....................\xia5.m
..........\........\.....................\xiafeijia.m
..........\........\.....................\xiafeijia3.fig
..........\........\jacobi and gauss and SOR迭代法
..........\........\..............................\expfj.asv
..........\........\..............................\gauss.asv
..........\........\..............................\gauss.m
..........\........\..............................\jacobi.asv
..........\........\..............................\jacobi1.m
..........\........\..............................\lu1.m
..........\........\..............................\SOR.asv
..........\........\..............................\SOR.m
..........\........\..............................\说明.txt
..........\........\LU(Crout)分解法并直接求得方程组的解
..........\........\...................................\Crout.m
..........\........\LU(Doolittle)分解法并直接求得方程组的解
..........\........\.......................................\Doolittle.asv
..........\........\.......................................\Doolittle.m
..........\........\Newton_Cotes系数
..........\........\................\Newton_Cotes.asv
..........\........\................\Newton_Cotes.m
..........\........\n的阶乘
..........\........\.......\jie.m
..........\........\.......\pan.m
..........\........\.......\说明.txt
..........\........\一般的Simpson法求函数的积分(要输入在区间n等分)
..........\........\..............................................\Simpson.asv
..........\........\..............................................\Simpson.m
..........\........\一般的梯形法求函数的积分(要输入区间的n等分)
..........\........\...........................................\tixing.m
..........\........\上机作业
..........\........\........\4.21.doc
..........\........\........\4.doc
..........\........\........\jie.doc
..........\........\........\复件 4.21.doc
..........\........\........\打印2.doc
..........\........\........\数值计算2.doc
..........\........\........\数值计算题目1.doc
..........\........\........\新建 Microsoft Word 文档.doc
..........\........\二分法
..........\........\......\x