文件名称:NnuericalMethodsforPDE
- 所属分类:
- 数学计算/工程计算
- 资源属性:
- [Windows] [Visual C] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 215kb
- 下载次数:
- 1次
- 提 供 者:
- B***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
本程序功能为计算一阶双曲型偏微分方程的初值问题,分别采用3种格式计算:1、迎风格式 2、Lax-Friedrichs格式 3、Lax-Wendroff格式-function of the procedures for calculating an order hyperbolic partial differential equation initial value problems were used to calculate three formats : 1, 2 upwind, the Lax- Friedrichs three format, Lax- Wendroff format
相关搜索: Lax
偏微分方程
hyperbolic
NnuericalMethodsforPDE
Wendroff
lax
wendroff
pde
偏微分方程
Lax-Friedriches
Lax-friendrich
偏微分方程
hyperbolic
NnuericalMethodsforPDE
Wendroff
lax
wendroff
pde
偏微分方程
Lax-Friedriches
Lax-friendrich
(系统自动生成,下载前可以参看下载内容)
下载文件列表
一阶双曲线方程偏微分
....................\公式.doc
....................\方程二(一阶双曲线方程偏微分)
....................\..............................\偏微分
....................\..............................\......\Debug
....................\..............................\......\fluxionary.cpp
....................\..............................\......\fluxionary.dsp
....................\..............................\......\fluxionary.dsw
....................\..............................\......\fluxionary.exe
....................\..............................\......\fluxionary.ncb
....................\..............................\......\fluxionary.opt
....................\..............................\......\fluxionary.plg
....................\公式.doc
....................\方程二(一阶双曲线方程偏微分)
....................\..............................\偏微分
....................\..............................\......\Debug
....................\..............................\......\fluxionary.cpp
....................\..............................\......\fluxionary.dsp
....................\..............................\......\fluxionary.dsw
....................\..............................\......\fluxionary.exe
....................\..............................\......\fluxionary.ncb
....................\..............................\......\fluxionary.opt
....................\..............................\......\fluxionary.plg