文件名称:模拟退火例子2

  • 所属分类:
  • 人工智能/神经网络/遗传算法
  • 资源属性:
  • 上传时间:
  • 2012-11-26
  • 文件大小:
  • 11kb
  • 下载次数:
  • 0次
  • 提 供 者:
  • 刘*
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容均来自于网络,请自行研究使用

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

-simulated annealing algorithm derived from solid annealing method, the heating to the full solid, let its slowly cooling, heating, solid particles with internal temperature rise-into disorder, which can increase, and slowly cooling gradual and orderly particles in each temperature has reached equilibrium, in the end when the temperature reached to ground state, which can be reduced to the minimum. According to the Metropolis criteria particles at a temperature T leveling the probability of e- E/(kT), in which the E-T when the temperature within, E capacity for change, for the Boltzmann constant k. Solid simulated annealing combinatorial optimization problems, will be able to target E simulation function f, T evolved temperature control parameters t, that is to be solving combinatorial o
(系统自动生成,下载前可以参看下载内容)

下载文件列表

模拟退火例子2

.............\barray.cxx

.............\barray.hpp

.............\cputime.cxx

.............\cputime.hpp

.............\erstream.cxx

.............\erstream.hpp

.............\Makefile

.............\r250.cxx

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org