文件名称:关键路径
介绍说明--下载内容均来自于网络,请自行研究使用
(1)输入E条弧<j,k>,建立AOE-网的存储结构 (2)从源点v出发,令ve[0]=0,按拓扑排序求其余各项顶点的最早发生时间ve[i](1<=i<=n-1).如果得到的拓朴有序序列中顶点个数小于网中顶点数n,则说明网中存在环,不能求关键路径,算法终止 否则执行步骤(3)(3)从汇点v出发,令vl[n-1]=ve[n-1],按逆拓朴排序求其余各顶点的最迟发生时间vl[i](n-2>=i>=2). (4)根据各顶点的ve和vl值,求每条弧s的最早发生时间e(s)和最迟开始时间l(s).若某条弧满足条件e(s)=l(s),则为关键活动.-(1) E importation of Arc lt; J, kgt; Establish AOE- network storage structure (2) v starting point source, ve [0] = 0, by topological sorting point for the rest of the earliest timing ve [i] (1LT ; = ilt; = n-1). if the Topography vertex orderly sequence number is less than net n vertices, a statement that net presence in Central, not for Critical Path, algorithm implementation steps to terminate or (3) (3) from the Department of v starting point, Vl [n-1] = ve [n-1], by the inverse order for the remaining topology of the latest occurrence of peak time Vl [i] (n-inversion; = IGT; = 2). (4) According to the apex of ve and Vl value for each s arc of the earliest timing e (s) and the latest starting time of l (s). If any meet the conditions of the arc e (s) = l (s), was critical activities.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
关键路径.c