文件名称:Projectjohu123006
介绍说明--下载内容均来自于网络,请自行研究使用
crc任意位生成多项式
任意位运算
自适应算法
循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的
编码方式,这种方法把要发送的数据看成是一个多项式的系数
,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为:
bn-1Xn-1+bn-2Xn-2+…+b1X+b0
例如:数据“10010101”可以写为多项式
X7+X4+X2+1。
循环冗余校验CRC
循环冗余校验方法的原理如下:
(1) 设要发送的数据对应的多项式为P(x)。
(2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式
的最高次幂为r。
(3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x)
。(左移r位)
(4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x)
×G(x)+R(x)。
(5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数
据块的末尾加上余式所对应的数据得到的。
(6) 发送T(x)所对应的数据。
(7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x)
,若余式为0,则认为没有错误,否则认为有错。-crc-generating polynomial arbitrary Operators adaptive algorithm Cyclic Redundancy Check (CRC. Cyclic Redundancy Code) is the polynomial coder, This way the data to be sent as a polynomial coefficient data bn- 1bn-2 ... b1b0 (0 or 1), corresponding to the polynomial : bn- 1Xn-1 bn- 2Xn-2 ... b1X belts such as : data "10010101" polynomial can be written as a X7 X4 X2. Cyclic Redundancy Check Cyclic Redundancy Check method of principle as follows : (1) The data to be sent to the corresponding polynomial p (x). (2) the sender and the receiver agreed on a generator polynomial G (x), set up the generator polynomial of the highest power of r. (3) In the data block Add to the end of r-0, then the polynomial corresponding to M (x) = XrP (x). (R-bits) (4) M (x) divided by G (
任意位运算
自适应算法
循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的
编码方式,这种方法把要发送的数据看成是一个多项式的系数
,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为:
bn-1Xn-1+bn-2Xn-2+…+b1X+b0
例如:数据“10010101”可以写为多项式
X7+X4+X2+1。
循环冗余校验CRC
循环冗余校验方法的原理如下:
(1) 设要发送的数据对应的多项式为P(x)。
(2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式
的最高次幂为r。
(3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x)
。(左移r位)
(4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x)
×G(x)+R(x)。
(5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数
据块的末尾加上余式所对应的数据得到的。
(6) 发送T(x)所对应的数据。
(7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x)
,若余式为0,则认为没有错误,否则认为有错。-crc-generating polynomial arbitrary Operators adaptive algorithm Cyclic Redundancy Check (CRC. Cyclic Redundancy Code) is the polynomial coder, This way the data to be sent as a polynomial coefficient data bn- 1bn-2 ... b1b0 (0 or 1), corresponding to the polynomial : bn- 1Xn-1 bn- 2Xn-2 ... b1X belts such as : data "10010101" polynomial can be written as a X7 X4 X2. Cyclic Redundancy Check Cyclic Redundancy Check method of principle as follows : (1) The data to be sent to the corresponding polynomial p (x). (2) the sender and the receiver agreed on a generator polynomial G (x), set up the generator polynomial of the highest power of r. (3) In the data block Add to the end of r-0, then the polynomial corresponding to M (x) = XrP (x). (R-bits) (4) M (x) divided by G (
(系统自动生成,下载前可以参看下载内容)
下载文件列表
iphist.dat
Project1.cfg
Project1.dof
Project1.dpr
Project1.exe
Project1.res
Project1.~dpr
Unit1.dcu
Unit1.ddp
Unit1.dfm
Unit1.pas
Unit1.~ddp
Unit1.~dfm
Unit1.~pas
Unit2.dcu
Unit2.ddp
Unit2.dfm
Unit2.pas
Unit2.~ddp
Unit2.~dfm
Unit2.~pas
Unit3.dcu
Unit3.dfm
Unit3.pas
Unit3.~dfm
Unit3.~pas
Project1.cfg
Project1.dof
Project1.dpr
Project1.exe
Project1.res
Project1.~dpr
Unit1.dcu
Unit1.ddp
Unit1.dfm
Unit1.pas
Unit1.~ddp
Unit1.~dfm
Unit1.~pas
Unit2.dcu
Unit2.ddp
Unit2.dfm
Unit2.pas
Unit2.~ddp
Unit2.~dfm
Unit2.~pas
Unit3.dcu
Unit3.dfm
Unit3.pas
Unit3.~dfm
Unit3.~pas