文件名称:number_theory_c++
介绍说明--下载内容均来自于网络,请自行研究使用
数论算法库 C++ 语言实现
代码内容 数论算法库,包括以下算法:
欧几里德算法求a,b的最大公倍数
扩展的欧几里德算法,求出gcd(a,b)和满足gcd(a,b)=ax+by的整数x和y
求解模线性方程 ax ≡ b (mod n) 其中n>0
求解模线性方程组(中国余数定理)
模取幂运算 计算a^b mod n (a,b可能很大)
Miller-Rabin随机性素数测试算法
-Number theory algorithms library C++ Language content code number theory algorithm library, which includes the following algorithms: Euclidean algorithm for a, b of the largest common multiple extended Euclidean algorithm, to derive gcd (a, b) and to meet gcd (a, b) = ax+ by the integer x and y-mode linear equations to solve ax ≡ b (mod n) in which n> 0 solving mode of linear equations (China remainder theorem) mode calculation computing exponentiation a ^ b mod n (a, b may be a lot) Miller-Rabin random prime number testing algorithm
代码内容 数论算法库,包括以下算法:
欧几里德算法求a,b的最大公倍数
扩展的欧几里德算法,求出gcd(a,b)和满足gcd(a,b)=ax+by的整数x和y
求解模线性方程 ax ≡ b (mod n) 其中n>0
求解模线性方程组(中国余数定理)
模取幂运算 计算a^b mod n (a,b可能很大)
Miller-Rabin随机性素数测试算法
-Number theory algorithms library C++ Language content code number theory algorithm library, which includes the following algorithms: Euclidean algorithm for a, b of the largest common multiple extended Euclidean algorithm, to derive gcd (a, b) and to meet gcd (a, b) = ax+ by the integer x and y-mode linear equations to solve ax ≡ b (mod n) in which n> 0 solving mode of linear equations (China remainder theorem) mode calculation computing exponentiation a ^ b mod n (a, b may be a lot) Miller-Rabin random prime number testing algorithm
(系统自动生成,下载前可以参看下载内容)
下载文件列表
数论
....\EUCLID.CPP
....\EUCLID.ICC
....\EUCLID.IN
....\EUCLID.IRS
....\EUCLID.OUT
....\Miller_Rabin.cpp
....\Miller_Rabin.icc
....\Miller_Rabin.in
....\Miller_Rabin.irs
....\Miller_Rabin.out
....\Miller_Rabin~.out
....\Modular_Expoent.cpp
....\Modular_Expoent.icc
....\Modular_Expoent.in
....\Modular_Expoent.irs
....\Modular_Expoent.out
....\modular_linear_equation.cpp
....\modular_linear_equation.icc
....\modular_linear_equation.in
....\modular_linear_equation.irs
....\modular_linear_equation.out
....\modular_linear_equation_group.cpp
....\modular_linear_equation_group.icc
....\modular_linear_equation_group.in
....\modular_linear_equation_group.irs
....\modular_linear_equation_group.out
....\number theory.h
....\EUCLID.CPP
....\EUCLID.ICC
....\EUCLID.IN
....\EUCLID.IRS
....\EUCLID.OUT
....\Miller_Rabin.cpp
....\Miller_Rabin.icc
....\Miller_Rabin.in
....\Miller_Rabin.irs
....\Miller_Rabin.out
....\Miller_Rabin~.out
....\Modular_Expoent.cpp
....\Modular_Expoent.icc
....\Modular_Expoent.in
....\Modular_Expoent.irs
....\Modular_Expoent.out
....\modular_linear_equation.cpp
....\modular_linear_equation.icc
....\modular_linear_equation.in
....\modular_linear_equation.irs
....\modular_linear_equation.out
....\modular_linear_equation_group.cpp
....\modular_linear_equation_group.icc
....\modular_linear_equation_group.in
....\modular_linear_equation_group.irs
....\modular_linear_equation_group.out
....\number theory.h