文件名称:juzenlianchen
介绍说明--下载内容均来自于网络,请自行研究使用
1.能实现不同的个数的矩阵连乘.
2.最后矩阵大小是8X8.
3是最优的矩阵相乘.
描 述:给定n 个矩阵{A1, A2,...,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。考察这n个矩阵的连乘积A1A2...An。矩阵A 和B 可乘的条件是矩阵A的列数等于矩阵B 的行数。若A 是一个p x q矩阵,B是一个q * r矩阵,则其乘积C=AB是一个p * r矩阵,需要pqr次数乘。-1. To achieve a number of different matrix continually multiply. 2. The final size of a 8x8 matrix. 3 is the best matrix multiplication. Descr iption : given n matrix (A1, A2 ,..., An), and Ai Ai is a mere, i = 1,2 ..., n-1. N explore the link matrix product ... An A1A2. Matrices A and B can either condition is out of the matrix A few matrix B is the number of rows. If A is a p x q matrix B is a matrix q* r, its product C = AB is a p* r matrix, the number required by pqr.
2.最后矩阵大小是8X8.
3是最优的矩阵相乘.
描 述:给定n 个矩阵{A1, A2,...,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。考察这n个矩阵的连乘积A1A2...An。矩阵A 和B 可乘的条件是矩阵A的列数等于矩阵B 的行数。若A 是一个p x q矩阵,B是一个q * r矩阵,则其乘积C=AB是一个p * r矩阵,需要pqr次数乘。-1. To achieve a number of different matrix continually multiply. 2. The final size of a 8x8 matrix. 3 is the best matrix multiplication. Descr iption : given n matrix (A1, A2 ,..., An), and Ai Ai is a mere, i = 1,2 ..., n-1. N explore the link matrix product ... An A1A2. Matrices A and B can either condition is out of the matrix A few matrix B is the number of rows. If A is a p x q matrix B is a matrix q* r, its product C = AB is a p* r matrix, the number required by pqr.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
矩阵连乘问题.txt