文件名称:imagetransformationbymatlab
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
1.图像频域处理正交变换的matlab实例
2.含有的频域变换内容如下:
正交变换通用算子
傅立叶变换
傅立叶变换的原理
傅立叶性质
二维离散傅立叶变换( 2DDFT )
快速傅立叶变换( FFT )
傅立叶变换的研究与应用
离散余弦变换
DCT 变换矩阵
dct2 函数和 dctmtx 函数
Walsh- Hadamard 变换
Radon 变换 -1. Image processing orthogonal frequency-domain transform Matlab two examples. Containing the frequency domain transform as follows : orthogonal transformation generic operator Fourier transform theory of Fourier transform two-dimensional Fourier nature of discrete Fourier transform (2DDF T) Fast Fourier Transform (FFT) of the Fourier transform and discrete cosine transform matrix dc t2 function and the function dctmtx Walsh-Hadamard transform Radon transform
2.含有的频域变换内容如下:
正交变换通用算子
傅立叶变换
傅立叶变换的原理
傅立叶性质
二维离散傅立叶变换( 2DDFT )
快速傅立叶变换( FFT )
傅立叶变换的研究与应用
离散余弦变换
DCT 变换矩阵
dct2 函数和 dctmtx 函数
Walsh- Hadamard 变换
Radon 变换 -1. Image processing orthogonal frequency-domain transform Matlab two examples. Containing the frequency domain transform as follows : orthogonal transformation generic operator Fourier transform theory of Fourier transform two-dimensional Fourier nature of discrete Fourier transform (2DDF T) Fast Fourier Transform (FFT) of the Fourier transform and discrete cosine transform matrix dc t2 function and the function dctmtx Walsh-Hadamard transform Radon transform
(系统自动生成,下载前可以参看下载内容)
下载文件列表
imagetransformationbymatlab
...........................\10-1.m
...........................\10-10.m
...........................\10-11.m
...........................\10-12.m
...........................\10-13.m
...........................\10-2.m
...........................\10-3.m
...........................\10-4.m
...........................\10-5.m
...........................\10-6.m
...........................\10-7.m
...........................\10-8.m
...........................\10-9.m
...........................\10-1.m
...........................\10-10.m
...........................\10-11.m
...........................\10-12.m
...........................\10-13.m
...........................\10-2.m
...........................\10-3.m
...........................\10-4.m
...........................\10-5.m
...........................\10-6.m
...........................\10-7.m
...........................\10-8.m
...........................\10-9.m