文件名称:MARBURG
介绍说明--下载内容均来自于网络,请自行研究使用
Routine marburg: To estimate the AR parameters by Burg algorithm.
Input Parameters:
n : Number of data samples
ip : Order of autoregressive process
x : Array of complex data samples x(0) through x(n-1)
Output Parameters:
ep : Real variable representing driving noise variance
a : Array of complex AR parameters a(0) to a(ip)
ierror=0 : No error
=1 : ep<=0 .
ef : complex work array. ef[0] to ef[n-1]
eb : complex work array. eb[0] to eb[n-1]
in chapter 12-Routine marburg: To estimate the AR parameters by Burg algorithm. Input Parameters: n: Number of data samples ip: Order of autoregressive process x: Array of complex data samples x (0) through x (n-1) Output Parameters: ep: Real variable representing driving noise variance a: Array of complex AR parameters a (0) to a (ip) ierror = 0: No error = 1: ep <= 0. ef: complex work array. ef [0] to ef [n-1] eb: complex work array. eb [0] to eb [n-1] in chapter 12
Input Parameters:
n : Number of data samples
ip : Order of autoregressive process
x : Array of complex data samples x(0) through x(n-1)
Output Parameters:
ep : Real variable representing driving noise variance
a : Array of complex AR parameters a(0) to a(ip)
ierror=0 : No error
=1 : ep<=0 .
ef : complex work array. ef[0] to ef[n-1]
eb : complex work array. eb[0] to eb[n-1]
in chapter 12-Routine marburg: To estimate the AR parameters by Burg algorithm. Input Parameters: n: Number of data samples ip: Order of autoregressive process x: Array of complex data samples x (0) through x (n-1) Output Parameters: ep: Real variable representing driving noise variance a: Array of complex AR parameters a (0) to a (ip) ierror = 0: No error = 1: ep <= 0. ef: complex work array. ef [0] to ef [n-1] eb: complex work array. eb [0] to eb [n-1] in chapter 12
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MARBURG.C