文件名称:juzen
介绍说明--下载内容均来自于网络,请自行研究使用
对于矩阵连乘积的最优计算次序问题,设计算Ai…j ,1≤i≤j≤n,所需的最少数乘次数为m[i,j],原问题的最优值为m[1,n]。
当i=j时,Ai…j=Ai为单一矩阵,无需计算,因此m[i,i]=0,i=1,2,…,n ;
当i<j时,可利用最优子结构性质来计算m[i,j]。事实上,若计算Ai…j的最优次序在Ak和Ak+1之间断开,i≤k<j,则:m[i,j]=m[i,k]+m[k+1,j]+rirk+1rj+1 。
-Even for the matrix product of the calculation of the optimal order problem, the design of operator Ai ... j, 1 ≤ i ≤ j ≤ n, the required number of at least a few by m [i, j], the original problem of optimal values for m [1 , n]. When i = j when, Ai ... j = Ai for a single matrix, without basis, it is m [i, i] = 0, i = 1,2, ..., n when i <j, to be used to sub-optimal structure the nature of computing m [i, j]. In fact, if the calculation of Ai ... j the optimal order in Ak and Ak+ 1 disconnect between, i ≤ k <j, then: m [i, j] = m [i, k]+ M [k+ 1 , j]+ rirk+ 1rj+ 1.
当i=j时,Ai…j=Ai为单一矩阵,无需计算,因此m[i,i]=0,i=1,2,…,n ;
当i<j时,可利用最优子结构性质来计算m[i,j]。事实上,若计算Ai…j的最优次序在Ak和Ak+1之间断开,i≤k<j,则:m[i,j]=m[i,k]+m[k+1,j]+rirk+1rj+1 。
-Even for the matrix product of the calculation of the optimal order problem, the design of operator Ai ... j, 1 ≤ i ≤ j ≤ n, the required number of at least a few by m [i, j], the original problem of optimal values for m [1 , n]. When i = j when, Ai ... j = Ai for a single matrix, without basis, it is m [i, i] = 0, i = 1,2, ..., n when i <j, to be used to sub-optimal structure the nature of computing m [i, j]. In fact, if the calculation of Ai ... j the optimal order in Ak and Ak+ 1 disconnect between, i ≤ k <j, then: m [i, j] = m [i, k]+ M [k+ 1 , j]+ rirk+ 1rj+ 1.
相关搜索: 矩阵连乘
(系统自动生成,下载前可以参看下载内容)
下载文件列表
juzen.cpp