文件名称:kitty
介绍说明--下载内容均来自于网络,请自行研究使用
一. 追踪模型
以(x , y)代表飞机的坐标,v代表飞机的速度;以(X ,Y)代表导弹的坐标,u代表导弹的速度。
由于导弹时刻指向飞机,故有
dY/dX=(y-Y)/(x-X)
记k=u/sqrt((y-Y)*(y-Y)+(x-X)*(x-X))
则有
dY/dt=k(y-Y) dX/dt=k(x-X)
故有叠代方程
Y=Y+k*(y-Y)*dt
X=X+k*(x-X)*dt (程序中以t代dt)
程序中第一个for循环代表发射导弹打飞机,第二个for代表飞机发现导弹后做正弦运动试图逃跑。
小结:
追踪模型中关键是利用叠代方程 Y=Y+k*(y-Y)*dt 确定追踪者的运动坐标,这样,不
X=X+k*(x-X)*dt
论被追踪者做何种运动,都可利用该叠代方程找出追踪者的运动轨迹(注意追踪者的速度应大于被追踪者的速度)。
-one. Track model (x, y) coordinates of the aircraft representatives, representatives v the speed of aircraft; A (X, Y), on behalf of the coordinates of missile, u representative of the speed of the missile. As the aircraft missile at times, it is dY/dX = (y-Y)/(x-X) recorded k = u/sqrt ((y-Y)* (y-Y) (x-x)* (x-X) ) have curves/dt = k (y-Y) dX/dt = k (x-X) there is an iterative equation Y Y = k* (y-Y)* dt X = X* k (x-x)* dt ( proceedings t substituting dt) procedures for the first cycle of a representative aircraft fired a missile, the second for representatives of aircraft missiles found after doing sinusoidal movement to try to escape. Summary : key tracking model is to use iterative equation Y Y = k* (y-Y)* dt tracers to determine the coordinates of movement, and X = X*
以(x , y)代表飞机的坐标,v代表飞机的速度;以(X ,Y)代表导弹的坐标,u代表导弹的速度。
由于导弹时刻指向飞机,故有
dY/dX=(y-Y)/(x-X)
记k=u/sqrt((y-Y)*(y-Y)+(x-X)*(x-X))
则有
dY/dt=k(y-Y) dX/dt=k(x-X)
故有叠代方程
Y=Y+k*(y-Y)*dt
X=X+k*(x-X)*dt (程序中以t代dt)
程序中第一个for循环代表发射导弹打飞机,第二个for代表飞机发现导弹后做正弦运动试图逃跑。
小结:
追踪模型中关键是利用叠代方程 Y=Y+k*(y-Y)*dt 确定追踪者的运动坐标,这样,不
X=X+k*(x-X)*dt
论被追踪者做何种运动,都可利用该叠代方程找出追踪者的运动轨迹(注意追踪者的速度应大于被追踪者的速度)。
-one. Track model (x, y) coordinates of the aircraft representatives, representatives v the speed of aircraft; A (X, Y), on behalf of the coordinates of missile, u representative of the speed of the missile. As the aircraft missile at times, it is dY/dX = (y-Y)/(x-X) recorded k = u/sqrt ((y-Y)* (y-Y) (x-x)* (x-X) ) have curves/dt = k (y-Y) dX/dt = k (x-X) there is an iterative equation Y Y = k* (y-Y)* dt X = X* k (x-x)* dt ( proceedings t substituting dt) procedures for the first cycle of a representative aircraft fired a missile, the second for representatives of aircraft missiles found after doing sinusoidal movement to try to escape. Summary : key tracking model is to use iterative equation Y Y = k* (y-Y)* dt tracers to determine the coordinates of movement, and X = X*
(系统自动生成,下载前可以参看下载内容)
下载文件列表
kitty.txt