文件名称:卡布列克常数
介绍说明--下载内容均来自于网络,请自行研究使用
验证卡布列克运算。任意一个四位数,只要它们各个位
上的数字是不全相同的,就有这样的规律:
1)将组成该四位数的四个数字由大到小排列,形成由这四个
数字构成的最大的四位数;
2)将组成该四位数的四个数字由小到大排列,形成由这四个
数字构成的最小的四位数(如果四个数中含有0,则得到的数不足
四位);
3)求两个数的差,得到一个新的四位数(高位零保留)。
重复以上过程,最后得到的结果是6174,这个数被称为卡布
列克数。-certification Roman computing. A four-digit arbitrary, as long as they all place on the same figure is incomplete, this is the law : a) the composition of the four four-digit figures with 7,10,13, formed by four of the greatest figures of the four-digit; 2) The composition of the four four-digit figures headed arranged by the formation of the four figures constitute the smallest of the four-digit (if 4 contains a few 0, then the less than 4); 3) 2 for the number of poor, received a new four-digit (high-reservations). Repeat the above process, the final result is 6,174, a figure known as the Roman few.
上的数字是不全相同的,就有这样的规律:
1)将组成该四位数的四个数字由大到小排列,形成由这四个
数字构成的最大的四位数;
2)将组成该四位数的四个数字由小到大排列,形成由这四个
数字构成的最小的四位数(如果四个数中含有0,则得到的数不足
四位);
3)求两个数的差,得到一个新的四位数(高位零保留)。
重复以上过程,最后得到的结果是6174,这个数被称为卡布
列克数。-certification Roman computing. A four-digit arbitrary, as long as they all place on the same figure is incomplete, this is the law : a) the composition of the four four-digit figures with 7,10,13, formed by four of the greatest figures of the four-digit; 2) The composition of the four four-digit figures headed arranged by the formation of the four figures constitute the smallest of the four-digit (if 4 contains a few 0, then the less than 4); 3) 2 for the number of poor, received a new four-digit (high-reservations). Repeat the above process, the final result is 6,174, a figure known as the Roman few.
相关搜索: 3-opt
(系统自动生成,下载前可以参看下载内容)
下载文件列表
卡布列克常数.txt