文件名称:newpnn[1]
介绍说明--下载内容均来自于网络,请自行研究使用
基于GMM的概率神经网络PNN具有良好的泛化能力,快速的学习能力,易于在线更新,并具有统计学的贝叶斯估计理论基础,已成为一种解决像说话人识别、文字识别、医疗图像识别、卫星云图识别等许多实际困难分类问题的很有效的工具。而且PNN不但具有GMM的大部分优点,还具有许多GMM没有的优点,如强鲁棒性,需要更少的训练语料,可以和其他网络其他理论无缝整合等。-GMM based probabilistic neural network PNN good generalization ability, the ability to learn fast, easy online updates, and with the Bayesian statistical theory based on estimates, and has become a solution as speaker recognition, text recognition, medical image recognition, satellite images and other real recognition when difficulties classification of very effective tool. But GMM PNN is not only the most advantages, but also has many advantages GMM not as strong robustness, require less training corpus, and other networks to other theories, such as seamless integration.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
newpnn
......\demopnn1.m
......\ENFRAME.M
......\MELBANKM.M
......\mfcc.m
......\testpnn.asv
......\testpnn.m
......\vad.m
......\demopnn1.m
......\ENFRAME.M
......\MELBANKM.M
......\mfcc.m
......\testpnn.asv
......\testpnn.m
......\vad.m