文件名称:LSTM-master
介绍说明--下载内容均来自于网络,请自行研究使用
通过Long Short-Term Memory长短期记忆网络处理时间序列缺失值问题。(handing missing data)
相关搜索: LSTM
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
LSTM-master | 0 | 2020-05-09 |
LSTM-master\LSTM_Fly | 0 | 2020-05-09 |
LSTM-master\LSTM_Fly\1.LSTMfly.py | 3049 | 2020-05-09 |
LSTM-master\LSTM_Fly\1.LSTM回归网络(1→1).py | 3317 | 2020-05-09 |
LSTM-master\LSTM_Fly\2.py | 3111 | 2020-05-09 |
LSTM-master\LSTM_Fly\2.移动窗口型回归(3→1).py | 3727 | 2020-05-09 |
LSTM-master\LSTM_Fly\3.py | 2851 | 2020-05-09 |
LSTM-master\LSTM_Fly\3.时间步长型回归(3→1).py | 3747 | 2020-05-09 |
LSTM-master\LSTM_Fly\4.批次之间具有记忆的LSTM.py | 3984 | 2020-05-09 |
LSTM-master\LSTM_Fly\5.批次之间具有堆叠的LSTM.py | 3995 | 2020-05-09 |
LSTM-master\LSTM_Fly\A_ReadMeLink.txt | 102 | 2020-05-09 |
LSTM-master\LSTM_Fly\airline-passengers.csv | 2186 | 2020-05-09 |
LSTM-master\LSTM系列 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量1 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量1\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量1\data_set\shampoo-sales.csv | 714 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量1\香皂销售预测.py | 1988 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量2 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量2\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量2\data_set\shampoo-sales.csv | 699 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量2\data_set\shampoo-sales1.csv | 244 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量2\时间序列转换成稳定数据.py | 1711 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量2\时间序列转监督学习数据.py | 1735 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量2\观测值缩放.py | 1397 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量3 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量3\LSTM模型开发.py | 6555 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量4 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量4\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量4\data_set\shampoo-sales.csv | 699 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量4\data_set\shampoo-sales1.csv | 244 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量4\完整的LSTM案例.py | 4736 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量5 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM单变量5\更健壮的LSTM案例.py | 4874 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量1 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量1\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量1\data_set\air_pollution.csv | 1966669 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量1\data_set\air_pollution_new.csv | 2301672 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量1\data_set\pollution.csv | 1966668 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量1\数据输出.py | 785 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量1\预处理.py | 788 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量2 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量2\LSTM数据预处理.py | 2103 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量2\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量2\data_set\air_pollution.csv | 1966669 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量2\data_set\air_pollution_new.csv | 2301672 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3\data_set\air_pollution.csv | 1966669 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3\data_set\air_pollution_new.csv | 2301672 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3\data_set\pollution.csv | 2301672 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3\data_set\raw.csv | 1966668 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3\定义&训练模型.py | 4104 | 2020-05-09 |
LSTM-master\LSTM系列\LSTM多变量3\数据预处理.py | 670 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测1 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测1\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测1\data_set\shampoo-sales.csv | 699 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测1\data_set\shampoo-sales1.csv | 244 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测1\静态模型预测.py | 4019 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测2 | 0 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测2\data_set | 0 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测2\data_set\shampoo-sales.csv | 699 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测2\data_set\shampoo-sales1.csv | 244 | 2020-05-09 |
LSTM-master\LSTM系列\Multi-Step LSTM预测2\多步预测的LSTM网络.py | 6982 | 2020-05-09 |
LSTM-master\README.md | 238 | 2020-05-09 |
LSTM-master\stock_predict | 0 | 2020-05-09 |
LSTM-master\stock_predict\dataset_1.csv | 107819 | 2020-05-09 |
LSTM-master\stock_predict\dataset_2.csv | 557149 | 2020-05-09 |
LSTM-master\stock_predict\model_save1 | 0 | 2020-05-09 |
LSTM-master\stock_predict\model_save1\checkpoint | 77 | 2020-05-09 |
LSTM-master\stock_predict\model_save1\modle.ckpt.data-00000-of-00001 | 20540 | 2020-05-09 |
LSTM-master\stock_predict\model_save1\modle.ckpt.index | 930 | 2020-05-09 |
LSTM-master\stock_predict\model_save1\modle.ckpt.meta | 224939 | 2020-05-09 |
LSTM-master\stock_predict\model_save2 | 0 | 2020-05-09 |
LSTM-master\stock_predict\model_save2\checkpoint | 77 | 2020-05-09 |
LSTM-master\stock_predict\model_save2\modle.ckpt.data-00000-of-00001 | 21260 | 2020-05-09 |
LSTM-master\stock_predict\model_save2\modle.ckpt.index | 936 | 2020-05-09 |
LSTM-master\stock_predict\model_save2\modle.ckpt.meta | 312736 | 2020-05-09 |
LSTM-master\stock_predict\stock_predict_1.py | 5415 | 2020-05-09 |
LSTM-master\stock_predict\stock_predict_2.py | 6702 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM) | 0 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\Keras中长短期记忆模型的5步生命周期 | 0 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\Keras中长短期记忆模型的5步生命周期\A_ReadMeLink.txt | 89 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\Keras中长短期记忆模型的5步生命周期\Keras中长短期记忆模型的5步操作.py | 2344 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\Keras中长短期记忆模型的5步生命周期\Keras中长短期记忆模型的5步操作代码分析.py | 3442 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例 | 0 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测) | 0 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\1.数据集图示.py | 378 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\10.抽取数据做验证集画损失图.py | 7212 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\2.构造简单的滞后模型.py | 1034 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\3.构造监督型数据结构.py | 1131 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\4.数据差分法.py | 1046 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\5.数据缩放法.py | 1028 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\6.LSTM模型实例.py | 6929 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\7.LSTM模型性能测评.py | 4032 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\8.代入股票数据测试.py | 6444 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\9.不做差分的股票数据预测.py | 6428 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\A_ReadMeLink.txt | 97 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\shampoo-sales.csv | 483 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(单步预测)\stocktest.csv | 5378 | 2020-05-09 |
LSTM-master\长短期记忆(LSTM)\LSTM实例\洗发水销量(多步预测) | 0 | 2020-05-09 |