文件名称:chatbot
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- 上传时间:
- 2020-05-23
- 文件大小:
- 55.29mb
- 下载次数:
- 1次
- 提 供 者:
- 白***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
聊天机器人
原理: 严谨的说叫 ”基于深度学习的开放域生成对话模型“,框架为Keras(Tensorflow的高层包装),方案为主流的RNN(循环神经网络)的变种LSTM(长短期记忆网络)+seq2seq(序列到序列模型),外加算法Attention Mechanism(注意力机制),分词工具为jieba,UI为Tkinter,基于”青云“语料(10万+闲聊对话)训练。
运行环境:python3.6以上,Tensorflow,pandas,numpy,jieba。(Chat Robot Principle: Strictly speaking, it is called "Open Domain Generation Dialogue Model Based on Deep Learning". The fr a mework is Keras (High-level Packaging of Tensorflow). The scheme is LSTM (Long-term and Short-term Memory Network)+seq2seq (Sequence to Sequence Model), plus Attention Mechanism (Attention Mechanism). The word segmentation tool is Jieba and the UI is Tkinter. Based on "Qingyun" corpus (100,000 + chat dialogue) training. Running environment: Python 3.6 or more, Tensorflow, pandas, numpy, jieba.)
原理: 严谨的说叫 ”基于深度学习的开放域生成对话模型“,框架为Keras(Tensorflow的高层包装),方案为主流的RNN(循环神经网络)的变种LSTM(长短期记忆网络)+seq2seq(序列到序列模型),外加算法Attention Mechanism(注意力机制),分词工具为jieba,UI为Tkinter,基于”青云“语料(10万+闲聊对话)训练。
运行环境:python3.6以上,Tensorflow,pandas,numpy,jieba。(Chat Robot Principle: Strictly speaking, it is called "Open Domain Generation Dialogue Model Based on Deep Learning". The fr a mework is Keras (High-level Packaging of Tensorflow). The scheme is LSTM (Long-term and Short-term Memory Network)+seq2seq (Sequence to Sequence Model), plus Attention Mechanism (Attention Mechanism). The word segmentation tool is Jieba and the UI is Tkinter. Based on "Qingyun" corpus (100,000 + chat dialogue) training. Running environment: Python 3.6 or more, Tensorflow, pandas, numpy, jieba.)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
answer_o.npy | 2621612 | 2019-05-23 |
main.py | 8381 | 2019-05-27 |
models | 0 | 2019-05-25 |
models\W--184-0.5949-.h5 | 73024168 | 2019-05-24 |
pad_answer.npy | 8000128 | 2019-05-23 |
pad_index_to_word.pkl | 550194 | 2019-05-23 |
pad_question.npy | 8000128 | 2019-05-23 |
pad_word_to_index.pkl | 550194 | 2019-05-23 |
simkai.ttf | 11787328 | 2017-12-04 |
START.bat | 80 | 2019-05-27 |
vocab_bag.pkl | 420384 | 2019-05-23 |