文件名称:word2vec
- 所属分类:
- 数值算法/人工智能
- 资源属性:
- 上传时间:
- 2017-11-22
- 文件大小:
- 204kb
- 下载次数:
- 0次
- 提 供 者:
- LeoNard*******
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
深度学习方向当下如火如荼,就差跑进楼下大*聊天内容了。深度学习的宝藏很多,一个小领域的一段小代码,都可以发出璀璨的光芒。如果你也刚刚踏入这方向,一开始难免有一些彷徨,但慢慢会有,清晨入古寺 初日照高林,那种博大的体验。
word2vec就是这样的一小段代码,如果你对word2vec的代码了如指掌,那你可以直接return。这是一篇关于word2vec介绍的文章,读完以后你会欣喜的发现自己会灵活的使用word2vec,但你也可能会郁闷,因为还是会觉得像是盲人摸象一样,完全对深度学(The depth of learning direction is in full swing, the poor downstairs ran into the chat content of aunt. Deep learning treasure a lot, a small area of a small code, can send out bright light. If you have just entered this direction, a start will inevitably have some hesitation, but will slowly, into the temple early in the morning sunshine in early high forest, the kind of broad experience.
Word2vec is such a little piece of code, if you know the code of word2vec, you can directly return. This is an article on the word2vec of the article, after reading you will find yourself flexible use of word2vec, but you might still feel depressed, because like the same to deep learning on the basis of one-sided viewpoint, completely without a clue. It doesn't matter. Who is not so little bit of accumulation?.)
word2vec就是这样的一小段代码,如果你对word2vec的代码了如指掌,那你可以直接return。这是一篇关于word2vec介绍的文章,读完以后你会欣喜的发现自己会灵活的使用word2vec,但你也可能会郁闷,因为还是会觉得像是盲人摸象一样,完全对深度学(The depth of learning direction is in full swing, the poor downstairs ran into the chat content of aunt. Deep learning treasure a lot, a small area of a small code, can send out bright light. If you have just entered this direction, a start will inevitably have some hesitation, but will slowly, into the temple early in the morning sunshine in early high forest, the kind of broad experience.
Word2vec is such a little piece of code, if you know the code of word2vec, you can directly return. This is an article on the word2vec of the article, after reading you will find yourself flexible use of word2vec, but you might still feel depressed, because like the same to deep learning on the basis of one-sided viewpoint, completely without a clue. It doesn't matter. Who is not so little bit of accumulation?.)
相关搜索: word2vec
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
word2vec | ||
word2vec\.svn | ||
word2vec\.svn\all-wcprops | 57 | 2016-03-18 |
word2vec\.svn\entries | 189 | 2016-03-18 |
word2vec\.svn\prop-base | ||
word2vec\.svn\props | ||
word2vec\.svn\text-base | ||
word2vec\.svn\tmp | ||
word2vec\.svn\tmp\prop-base | ||
word2vec\.svn\tmp\props | ||
word2vec\.svn\tmp\text-base | ||
word2vec\trunk | ||
word2vec\trunk\.svn | ||
word2vec\trunk\.svn\all-wcprops | 1680 | 2016-03-18 |
word2vec\trunk\.svn\entries | 2864 | 2016-03-18 |
word2vec\trunk\.svn\prop-base | ||
word2vec\trunk\.svn\prop-base\demo-train-big-model-v1.sh.svn-base | 30 | 2016-03-18 |
word2vec\trunk\.svn\props | ||
word2vec\trunk\.svn\text-base | ||
word2vec\trunk\.svn\text-base\compute-accuracy.c.svn-base | 5241 | 2016-03-18 |
word2vec\trunk\.svn\text-base\demo-analogy.sh.svn-base | 631 | 2016-03-18 |
word2vec\trunk\.svn\text-base\demo-classes.sh.svn-base | 358 | 2016-03-18 |
word2vec\trunk\.svn\text-base\demo-phrase-accuracy.sh.svn-base | 885 | 2016-03-18 |
word2vec\trunk\.svn\text-base\demo-phrases.sh.svn-base | 853 | 2016-03-18 |
word2vec\trunk\.svn\text-base\demo-train-big-model-v1.sh.svn-base | 5126 | 2016-03-18 |
word2vec\trunk\.svn\text-base\demo-word-accuracy.sh.svn-base | 414 | 2016-03-18 |
word2vec\trunk\.svn\text-base\demo-word.sh.svn-base | 272 | 2016-03-18 |
word2vec\trunk\.svn\text-base\distance.c.svn-base | 4557 | 2016-03-18 |
word2vec\trunk\.svn\text-base\LICENSE.svn-base | 11358 | 2016-03-18 |
word2vec\trunk\.svn\text-base\makefile.svn-base | 718 | 2016-03-18 |
word2vec\trunk\.svn\text-base\questions-phrases.txt.svn-base | 168209 | 2016-03-18 |
word2vec\trunk\.svn\text-base\questions-words.txt.svn-base | 603955 | 2016-03-18 |
word2vec\trunk\.svn\text-base\README.txt.svn-base | 1209 | 2016-03-18 |
word2vec\trunk\.svn\text-base\word-analogy.c.svn-base | 4664 | 2016-03-18 |
word2vec\trunk\.svn\text-base\word2phrase.c.svn-base | 9386 | 2016-03-18 |
word2vec\trunk\.svn\text-base\word2vec.c.svn-base | 26184 | 2016-03-18 |
word2vec\trunk\.svn\tmp | ||
word2vec\trunk\.svn\tmp\prop-base | ||
word2vec\trunk\.svn\tmp\props | ||
word2vec\trunk\.svn\tmp\text-base | ||
word2vec\trunk\compute-accuracy.c | 5241 | 2016-03-18 |
word2vec\trunk\demo-analogy.sh | 631 | 2016-03-18 |
word2vec\trunk\demo-classes.sh | 358 | 2016-03-18 |
word2vec\trunk\demo-phrase-accuracy.sh | 885 | 2016-03-18 |
word2vec\trunk\demo-phrases.sh | 853 | 2016-03-18 |
word2vec\trunk\demo-train-big-model-v1.sh | 5126 | 2016-03-18 |
word2vec\trunk\demo-word-accuracy.sh | 414 | 2016-03-18 |
word2vec\trunk\demo-word.sh | 272 | 2016-03-18 |
word2vec\trunk\distance.c | 4557 | 2016-03-18 |
word2vec\trunk\LICENSE | 11358 | 2016-03-18 |
word2vec\trunk\makefile | 718 | 2016-03-18 |
word2vec\trunk\questions-phrases.txt | 168209 | 2016-03-18 |
word2vec\trunk\questions-words.txt | 603955 | 2016-03-18 |
word2vec\trunk\README.txt | 1209 | 2016-03-18 |
word2vec\trunk\word-analogy.c | 4664 | 2016-03-18 |
word2vec\trunk\word2phrase.c | 9386 | 2016-03-18 |
word2vec\trunk\word2vec.c | 26184 | 2016-03-18 |