文件名称:PF_example
介绍说明--下载内容均来自于网络,请自行研究使用
粒子滤波算法源于Montecarlo的思想,即以某事件出现的频率来指代该事件的概率。因此在滤波过程中,需要用到概率如P(x)的地方,一概对变量x采样,以大量采样的分布近似来表示P(x)。因此,采用此一思想,在滤波过程中粒子滤波可以处理任意形式的概率,而不像Kalman滤波只能处理高斯分布的概率问题。他的一大优势也在于此。(A number of prognostics approaches have been proposed in
the literature in support of PrM [6]. Among these, Particle Filtering (PF) is emerging as a powerful model-driven technique,
capable of robustly predicting the future behavior of the probability mass distribution that describesthe uncertainty in the actual degradation state of the equipment)
the literature in support of PrM [6]. Among these, Particle Filtering (PF) is emerging as a powerful model-driven technique,
capable of robustly predicting the future behavior of the probability mass distribution that describesthe uncertainty in the actual degradation state of the equipment)
相关搜索: 粒子滤波算法
(系统自动生成,下载前可以参看下载内容)
下载文件列表
PF_example.m