文件名称:8-PLDAPPPPPPP
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
Dimensionality reduction is one of the important preprocessing
steps to handle high-dimensional data. Linear discriminant
analysis (LDA) is a classical and popular approach for this purpose.
LDA finds an optimal linear transformation, which maximizes
the ratio of the variance in the between-class distance to
the variance in the within-class distance. On the other hand,
in order to overcome the limitation in LDA resulting the
assumption of equal covariance, several heteroscedastic extensions,
such as heteroscedastic discriminant analysis (HDA), have
been proposed.-Dimensionality reduction is one of the important preprocessing
steps to handle high-dimensional data. Linear discriminant
analysis (LDA) is a classical and popular approach for this purpose.
LDA finds an optimal linear transformation, which maximizes
the ratio of the variance in the between-class distance to
the variance in the within-class distance. On the other hand,
in order to overcome the limitation in LDA resulting the
assumption of equal covariance, several heteroscedastic extensions,
such as heteroscedastic discriminant analysis (HDA), have
been proposed.
steps to handle high-dimensional data. Linear discriminant
analysis (LDA) is a classical and popular approach for this purpose.
LDA finds an optimal linear transformation, which maximizes
the ratio of the variance in the between-class distance to
the variance in the within-class distance. On the other hand,
in order to overcome the limitation in LDA resulting the
assumption of equal covariance, several heteroscedastic extensions,
such as heteroscedastic discriminant analysis (HDA), have
been proposed.-Dimensionality reduction is one of the important preprocessing
steps to handle high-dimensional data. Linear discriminant
analysis (LDA) is a classical and popular approach for this purpose.
LDA finds an optimal linear transformation, which maximizes
the ratio of the variance in the between-class distance to
the variance in the within-class distance. On the other hand,
in order to overcome the limitation in LDA resulting the
assumption of equal covariance, several heteroscedastic extensions,
such as heteroscedastic discriminant analysis (HDA), have
been proposed.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
8-PLDA+++++++\address.docx
.............\no\20071004_Winston_PLDA.ppt
.............\..\plda-3.1-C++\5956491plda-3.1.tar.gz
.............\..\............\plda\accumulative_model.cc
.............\..\............\....\accumulative_model.h
.............\..\............\....\cmd_flags.cc
.............\..\............\....\cmd_flags.h
.............\..\............\....\common.cc
.............\..\............\....\common.h
.............\..\............\....\COPYING
.............\..\............\....\document.cc
.............\..\............\....\document.h
.............\..\............\....\infer.cc
.............\..\............\....\INSTALL
.............\..\............\....\lda.cc
.............\..\............\....\Makefile
.............\..\............\....\model.cc
.............\..\............\....\model.h
.............\..\............\....\mpi_lda.cc
.............\..\............\....\README
.............\..\............\....\sampler.cc
.............\..\............\....\sampler.h
.............\..\............\....\testdata\test_data.txt
.............\..\............\....\view_model.py
.............\..\............\plda-3.1.tar.gz
.............\..\probabelistic-lda.pdf
.............\P-LDA\1-plda-transfer\plda-orginal.doc
.............\.....\...............\plda-ostad.pdf
.............\.....\...............\POWER LINEAR DISCRIMINANT ANALYSIS.docx
.............\.....\...............\Xj.docx
.............\.....\...............\______ ______ ___ ___.docx
.............\.....\70266646P-LDA.rar
.............\.....\P-LDA\60-40-dataset\cmc_test.m
.............\.....\.....\.............\cmc_train.m
.............\.....\.....\.............\diabetes_test.m
.............\.....\.....\.............\diabetes_train.m
.............\.....\.....\.............\glass_test.m
.............\.....\.....\.............\glass_train.m
.............\.....\.....\.............\ionosphere_test.m
.............\.....\.....\.............\ionosphere_train.m
.............\.....\.....\.............\Iris_test.m
.............\.....\.....\.............\Iris_train.m
.............\.....\.....\.............\tae_test.m
.............\.....\.....\.............\tae_train.m
.............\.....\.....\.............\vowel100_test.data
.............\.....\.....\.............\vowel100_trin.data
.............\.....\.....\.............\waveform_test.m
.............\.....\.....\.............\waveform_train.m
.............\.....\.....\.............\wine_test.m
.............\.....\.....\.............\wine_train.m
.............\.....\.....\create_dataset\6-vowel_nor\orginal\vowe1.arff
.............\.....\.....\..............\...........\.......\vowel.libsvm
.............\.....\.....\..............\...........\.......\vowel.scale.t
.............\.....\.....\..............\...........\vowel.docx
.............\.....\.....\..............\...........\vowel100test.libsvm
.............\.....\.....\..............\...........\vowel100_test.arff
.............\.....\.....\..............\...........\vowel100_trin.arff
.............\.....\.....\..............\...........\vowel100_trin.libsvm
.............\.....\.....\..............\cmc.data
.............\.....\.....\..............\diabetes.data
.............\.....\.....\..............\diabetes_n.data
.............\.....\.....\..............\glass.data
.............\.....\.....\..............\ionosphere.data
.............\.....\.....\..............\Iris.data
.............\.....\.....\..............\tae.data
.............\.....\.....\..............\vowel100_test.data
.............\.....\.....\..............\vowel100_trin.data
.............\.....\.....\..............\waveform.data
.............\.....\.....\..............\wine.data
.............\.....\.....\..............\wine_n.data
.............\.....\.....\dataset_PLDA\cmc-test.arff
.............\.....\.....\............\cmc-test.m
.............\.....\.....\............\cmc-train.arff
.............\.....\.....\............\cmc-train.m
.............\.....\.....\............\diabet-test.arff
.............\.....\.....\............\diabet-test.m
.............\.....\.....\............\diabet-train.