文件名称:SVC
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
建立LibSVM预测模型,基于网格算法、粒子群算法、遗传算法优化了模型参数,并由最终模型预测了给定切削参数下零件的粗糙度等级。-Establish LibSVM prediction model, grid-based algorithm, particle swarm optimization, genetic algorithm to optimize the parameters of the model, the final model prediction given by the cutting parameters of parts roughness class.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
SVC
...\Matlab辅助函数文件
...\..................\ClassResult.m
...\..................\SVMcgForClass.m
...\..................\gaSVMcgForClass.m
...\..................\psoSVMcgForClass.m
...\..................\scaleForSVM.m
...\libsvm-3.20工具箱
...\.................\COPYRIGHT
...\.................\FAQ.html
...\.................\Makefile
...\.................\Makefile.win
...\.................\README
...\.................\heart_scale
...\.................\java
...\.................\....\Makefile
...\.................\....\libsvm
...\.................\....\......\svm.java
...\.................\....\......\svm.m4
...\.................\....\......\svm_model.java
...\.................\....\......\svm_node.java
...\.................\....\......\svm_parameter.java
...\.................\....\......\svm_print_interface.java
...\.................\....\......\svm_problem.java
...\.................\....\libsvm.jar
...\.................\....\svm_predict.java
...\.................\....\svm_scale.java
...\.................\....\svm_toy.java
...\.................\....\svm_train.java
...\.................\....\test_applet.html
...\.................\matlab
...\.................\......\Makefile
...\.................\......\README
...\.................\......\libsvmread.c
...\.................\......\libsvmwrite.c
...\.................\......\make.m
...\.................\......\svm_model_matlab.c
...\.................\......\svm_model_matlab.h
...\.................\......\svmpredict.c
...\.................\......\svmtrain.c
...\.................\python
...\.................\......\Makefile
...\.................\......\README
...\.................\......\svm.py
...\.................\......\svmutil.py
...\.................\svm-predict.c
...\.................\svm-scale.c
...\.................\svm-toy
...\.................\.......\gtk
...\.................\.......\...\Makefile
...\.................\.......\...\callbacks.cpp
...\.................\.......\...\callbacks.h
...\.................\.......\...\interface.c
...\.................\.......\...\interface.h
...\.................\.......\...\main.c
...\.................\.......\...\svm-toy.glade
...\.................\.......\qt
...\.................\.......\..\Makefile
...\.................\.......\..\svm-toy.cpp
...\.................\.......\windows
...\.................\.......\.......\svm-toy.cpp
...\.................\svm-train.c
...\.................\svm.cpp
...\.................\svm.def
...\.................\svm.h
...\.................\tools
...\.................\.....\README
...\.................\.....\checkdata.py
...\.................\.....\easy.py
...\.................\.....\grid.py
...\.................\.....\subset.py
...\.................\windows
...\.................\.......\libsvm.dll
...\.................\.......\libsvmread.mexw64
...\.................\.......\libsvmwrite.mexw64
...\.................\.......\svm-predict.exe
...\.................\.......\svm-scale.exe
...\.................\.......\svm-toy.exe
...\.................\.......\svm-train.exe
...\.................\.......\svmpredict.mexw64
...\.................\.......\svmtrain.mexw64
...\分类模型源程序
...\..............\data.mat
...\..............\final_Classification_model.m
...\..............\initial_Classification_model.m
...\参数优化源程序
...\..............\GA_For_cg.m
...\..............\PSO_For_cg.m
...\..............\WangGe_For_cg.m
...\封装模型
...\........\SVC.m
...\数据文件
...\........\Data.xlsx
...\........\data.mat