文件名称:deeplearning
- 所属分类:
- 人工智能/神经网络/遗传算法
- 资源属性:
- [Linux] [SHELL] [源码]
- 上传时间:
- 2016-09-11
- 文件大小:
- 17.11mb
- 下载次数:
- 0次
- 提 供 者:
- 乱***
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
一个深度学习的python例程,该程序可以通过学习大量手写数字的数据提取出各手写数字的特征并对其进行识别。本文件中包含运行的主程序和结果,以及运行程序所需要的python库。-
A depth learning python routines, the program can learn a lot of handwritten digital data extracted handwritten digits of each feature and gain recognition. The main program and the results contained in this document is running, and run the program needed python library.
A depth learning python routines, the program can learn a lot of handwritten digital data extracted handwritten digits of each feature and gain recognition. The main program and the results contained in this document is running, and run the program needed python library.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
DeepLearningTutorials-master
............................\.gitignore
............................\.hgignore
............................\.travis.yml
............................\code
............................\....\cA.py
............................\....\convolutional_mlp.py
............................\....\dA.py
............................\....\DBN.py
............................\....\hmc
............................\....\...\hmc.py
............................\....\...\test_hmc.py
............................\....\...\__init__.py
............................\....\logistic_cg.py
............................\....\logistic_sgd.py
............................\....\logistic_sgd.pyc
............................\....\mlp.py
............................\....\rbm.py
............................\....\rnnrbm.py
............................\....\SdA.py
............................\....\test.py
............................\....\utils.py
............................\....\utils.pyc
............................\data
............................\....\download.sh
............................\....\training_colorpatches_16x16_demo.mat
............................\doc
............................\...\.templates
............................\...\..........\layout.html
............................\...\conf.py
............................\...\contents.txt
............................\...\dA.txt
............................\...\DBN.txt
............................\...\deep.txt
............................\...\gettingstarted.txt
............................\...\hmc.txt
............................\...\images
............................\...\......\3wolfmoon.jpg
............................\...\......\3wolfmoon_output.png
............................\...\......\bm.png
............................\...\......\cnn_explained.png
............................\...\......\conv_1D_nn.png
............................\...\......\DBN3.png
............................\...\......\filters_at_epoch_14.png
............................\...\......\filters_corruption_0.png
............................\...\......\filters_corruption_30.png
............................\...\......\markov_chain.png
............................\...\......\mlp.png
............................\...\......\mnist_0.png
............................\...\......\mnist_1.png
............................\...\......\mnist_2.png
............................\...\......\mnist_3.png
............................\...\......\mnist_4.png
............................\...\......\mnist_5.png
............................\...\......\mylenet.png
............................\...\......\rbm.png
............................\...\......\rnnrbm.png
............................\...\......\rnnrbm.svg
............................\...\......\sample1.png
............................\...\......\sample2.png
............................\...\......\samples.png
............................\...\......\sparse_1D_nn.png
............................\...\intro.txt
............................\...\lenet.txt
............................\...\LICENSE.txt
............................\...\logreg.txt
............................\...\Makefile
............................\...\mlp.txt
............................\...\rbm.txt
............................\...\references.txt
............................\...\rnnrbm.txt
............................\...\scripts
............................\...\.......\docgen.py
............................\...\SdA.txt
............................\...\utilities.txt
............................\issues_closed
............................\.............\2_RBM_cost_fn.txt
............................\issues_open
............................\...........\1_SdA_performance.txt
............................\...........\3_RBM_scan_GPU.txt
............................\...........\4_RBM_scan.txt
............................\...........\5_results.txt
............................\...........\6_benchmarking_pybrain.txt
............................\misc
............................\....\do_nightly_build
.......................