文件名称:Ch_Rem_Poly
介绍说明--下载内容均来自于网络,请自行研究使用
(程序Poly_GCD.m和Poly_GCD_Main.m)
多项式的中国剩余定理定义在在文学更数学符号如下(对于如在书中理查德Blahut/ P77):对于任何一组两两互素多项式[M1(X),2(X),... MK(X)],一组同余:C(X)= eqvt模(CK(x)中,MK(X))中,k=1,2,...,K具有一定程度的小于度的独特的解决方案。-The Chinese Remainder Theorem for Polynomials is defined in
still more mathematical notations in literature as follows
(for eg, in the book by Richard Blahut/P77) :
For any set of Pair-wise Coprime Polynomials [m1(x), m2(x), ... mk(x)],
the set of congruences :
c(x) =eqvt mod ( ck(x), mk(x) ), k = 1, 2, ... k
has a unique solution of a degree less than the degree
of M(x) = prod (m1(x), m2(x), ... mk(x)), given by :
c_soln_Poly(x) = sum ( mod ( ck(x).Nk(x).Mk(x), M(x) ) )
where Mk(x) = M(x)/mk(x), and Nk(x) is the Polynomial that satisfies
Nk(x).Mk(x)+ nk(x).mk(x) = GCD = 1
(this is where we need to use my programmes Poly_GCD.m and Poly_GCD_Main.m)
多项式的中国剩余定理定义在在文学更数学符号如下(对于如在书中理查德Blahut/ P77):对于任何一组两两互素多项式[M1(X),2(X),... MK(X)],一组同余:C(X)= eqvt模(CK(x)中,MK(X))中,k=1,2,...,K具有一定程度的小于度的独特的解决方案。-The Chinese Remainder Theorem for Polynomials is defined in
still more mathematical notations in literature as follows
(for eg, in the book by Richard Blahut/P77) :
For any set of Pair-wise Coprime Polynomials [m1(x), m2(x), ... mk(x)],
the set of congruences :
c(x) =eqvt mod ( ck(x), mk(x) ), k = 1, 2, ... k
has a unique solution of a degree less than the degree
of M(x) = prod (m1(x), m2(x), ... mk(x)), given by :
c_soln_Poly(x) = sum ( mod ( ck(x).Nk(x).Mk(x), M(x) ) )
where Mk(x) = M(x)/mk(x), and Nk(x) is the Polynomial that satisfies
Nk(x).Mk(x)+ nk(x).mk(x) = GCD = 1
(this is where we need to use my programmes Poly_GCD.m and Poly_GCD_Main.m)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Readme_Ch_Rem_Poly.doc
Poly_GCD_POWER_6_July2005.zip
Ch_Rem_Thr_Poly.m