文件名称:PCA(test)
- 所属分类:
- 其他小程序
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2016-05-25
- 文件大小:
- 357kb
- 下载次数:
- 0次
- 提 供 者:
- yejint*******
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
完整的PCA 人脸识别的应用包括几个步骤:人脸图像预处理;读入人脸库,训练形成
特征子空间;把训练图像和测试图像投影到上一步骤中得到的子空间上;选择一定
的距离函数进行识别-We present an approach to the detection and
identification of human faces and describe a working,
near-real-time face recognition system which
tracks a subject’s head and then recognizes the person
by comparing characteristics of the face to those
of known individuals. Our approach treats face
recognition as a two-dimensional recognition problem,
taking advantage of the fact that faces are are
normally upright and thus may be described by a
small set of 2-D characteristic views. Face images
are projected onto a feature space (“face space”)
that best encodes the variation among known face
images. The face space is defined by the “eigenfaces”,
which are the eigenvectors of the set of faces
they do not necessarily correspond to isolated features
such as eyes, ears, and noses. The fr a mework
provides the ability to learn to recognize new faces
in an unsupervised manner.
特征子空间;把训练图像和测试图像投影到上一步骤中得到的子空间上;选择一定
的距离函数进行识别-We present an approach to the detection and
identification of human faces and describe a working,
near-real-time face recognition system which
tracks a subject’s head and then recognizes the person
by comparing characteristics of the face to those
of known individuals. Our approach treats face
recognition as a two-dimensional recognition problem,
taking advantage of the fact that faces are are
normally upright and thus may be described by a
small set of 2-D characteristic views. Face images
are projected onto a feature space (“face space”)
that best encodes the variation among known face
images. The face space is defined by the “eigenfaces”,
which are the eigenvectors of the set of faces
they do not necessarily correspond to isolated features
such as eyes, ears, and noses. The fr a mework
provides the ability to learn to recognize new faces
in an unsupervised manner.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
PCA(test)
.........\CreateDatabase.m
.........\EigenfaceCore.m
.........\Recognition.m
.........\TestDatabase
.........\............\1.jpg
.........\............\10.jpg
.........\............\11.jpg
.........\............\12.jpg
.........\............\13.jpg
.........\............\14.jpg
.........\............\15.jpg
.........\............\16.jpg
.........\............\17.jpg
.........\............\18.jpg
.........\............\19.jpg
.........\............\2.jpg
.........\............\20.jpg
.........\............\21.jpg
.........\............\22.jpg
.........\............\23.jpg
.........\............\24.jpg
.........\............\3.jpg
.........\............\4.jpg
.........\............\5.jpg
.........\............\6.jpg
.........\............\7.jpg
.........\............\8.jpg
.........\............\9.jpg
.........\TrainDatabase
.........\.............\1.jpg
.........\.............\10.jpg
.........\.............\11.jpg
.........\.............\12.jpg
.........\.............\13.jpg
.........\.............\14.jpg
.........\.............\15.jpg
.........\.............\16.jpg
.........\.............\17.jpg
.........\.............\18.jpg
.........\.............\19.jpg
.........\.............\2.jpg
.........\.............\20.jpg
.........\.............\21.jpg
.........\.............\22.jpg
.........\.............\23.jpg
.........\.............\24.jpg
.........\.............\25.jpg
.........\.............\26.jpg
.........\.............\27.jpg
.........\.............\28.jpg
.........\.............\29.jpg
.........\.............\3.jpg
.........\.............\30.jpg
.........\.............\31.jpg
.........\.............\32.jpg
.........\.............\33.jpg
.........\.............\34.jpg
.........\.............\35.jpg
.........\.............\36.jpg
.........\.............\37.jpg
.........\.............\38.jpg
.........\.............\4.jpg
.........\.............\5.jpg
.........\.............\6.jpg
.........\.............\7.jpg
.........\.............\8.jpg
.........\.............\9.jpg
.........\mian.m