文件名称:DM_BayesAndKNN
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
C++实现数据挖掘的贝叶斯分类方法和k-近邻分类方法,有源码,有示例数据,有说明文档-C++ implementation of data mining methods and Bayesian classification k- nearest neighbor classification method, there is source code, sample data, documentation
(系统自动生成,下载前可以参看下载内容)
下载文件列表
DM_BayesAndKNN\Debug\DM_BayesAndKNN.exe
..............\.....\DM_BayesAndKNN.ilk
..............\.....\DM_BayesAndKNN.pdb
..............\.M_BayesAndKNN\BayesAndKNN.h
..............\..............\data_form.txt
..............\..............\Debug\DM_BayesAndKNN.log
..............\..............\.....\DM_BayesAndKNN.obj
..............\..............\.....\DM_BayesAndKNN.pch
..............\..............\.....\...............tlog\CL.read.1.tlog
..............\..............\.....\...................\CL.write.1.tlog
..............\..............\.....\...................\DM_BayesAndKNN.lastbuildstate
..............\..............\.....\...................\link.read.1.tlog
..............\..............\.....\...................\link.write.1.tlog
..............\..............\.....\stdafx.obj
..............\..............\.....\vc120.idb
..............\..............\.....\vc120.pdb
..............\..............\DM_BayesAndKNN.cpp
..............\..............\DM_BayesAndKNN.vcxproj
..............\..............\DM_BayesAndKNN.vcxproj.filters
..............\..............\ReadMe.txt
..............\..............\Source_data.csv
..............\..............\stdafx.cpp
..............\..............\stdafx.h
..............\..............\targetver.h
..............\DM_BayesAndKNN.sdf
..............\DM_BayesAndKNN.sln
..............\DM_BayesAndKNN.v12.suo
..............\ipch\dm_bayesandknn-a58cd615\dm_bayesandknn-4824fa4a.ipch
..............\Source_data.xlsx
..............\操作说明文档.txt
..............\DM_BayesAndKNN\Debug\DM_BayesAndKNN.tlog
..............\..............\Debug
..............\ipch\dm_bayesandknn-a58cd615
..............\Debug
..............\DM_BayesAndKNN
..............\ipch
DM_BayesAndKNN