文件名称:main.cc
介绍说明--下载内容均来自于网络,请自行研究使用
去年的 tangjz 非常喜欢做数论题,但是一年以后的 tangjz 却不那么会做了。
在整理以前的试题时,他发现了这样一道题目:“求 ∑σ(i) ,其中 1≤i≤N , σ(i) 表示 i 的约数之和。”
现在他长大了,题目也变难了,所以麻烦你来帮他解决一道数论题吧。
他需要你求如下表达式的值:
∑Ni=1∑Nj=1max(i,j)⋅ σ(i⋅ j)
其中 max(i,j) 表示 i 和 j 里的最大值, σ(i⋅ j) 表示 i⋅ j 的约数之和。
例如当 N=2 的时候,由 σ(1)=1,σ(2)=1+2=3,σ(4)=1+2+4=7 可知,答案应为 1⋅ σ(1⋅ 1)+2⋅ σ(1⋅ 2)+2⋅ σ(2⋅ 1)+2⋅ σ(2⋅ 2)=27 。
他发现答案有点大,所以你只需要告诉他答案模 1000000007 的值即可。-Last year s tangjz love do theory very much, but a year later, tangjz is not so do.
In order to previous questions, he found such a topic: sigma sigma (I), and 1 = I = N, sigma (I) representation and approximate i.
Now that he s grown up, the problem is hard, so you can help him solve a problem.
He needs you to ask the value of the expression as follows:
Sigma Sigma Ni=1 Nj=1max (I, J) Sigma (I J)
The max (I, J) said the maximum values of I and j, sigma (I J) and I said about J.
For example, when N=2, by =1 (1), sigma sigma sigma (2) =1+2=3 (4) =1+2+4=7 shows that the answer should be 1 sigma (1 1)+2 (1 sigma 2 sigma (2)+2 1 sigma (2)+2 2) =27.
He found that the answer is a little big, so you just need to tell him the answer to 1000000007 of the value can be.
在整理以前的试题时,他发现了这样一道题目:“求 ∑σ(i) ,其中 1≤i≤N , σ(i) 表示 i 的约数之和。”
现在他长大了,题目也变难了,所以麻烦你来帮他解决一道数论题吧。
他需要你求如下表达式的值:
∑Ni=1∑Nj=1max(i,j)⋅ σ(i⋅ j)
其中 max(i,j) 表示 i 和 j 里的最大值, σ(i⋅ j) 表示 i⋅ j 的约数之和。
例如当 N=2 的时候,由 σ(1)=1,σ(2)=1+2=3,σ(4)=1+2+4=7 可知,答案应为 1⋅ σ(1⋅ 1)+2⋅ σ(1⋅ 2)+2⋅ σ(2⋅ 1)+2⋅ σ(2⋅ 2)=27 。
他发现答案有点大,所以你只需要告诉他答案模 1000000007 的值即可。-Last year s tangjz love do theory very much, but a year later, tangjz is not so do.
In order to previous questions, he found such a topic: sigma sigma (I), and 1 = I = N, sigma (I) representation and approximate i.
Now that he s grown up, the problem is hard, so you can help him solve a problem.
He needs you to ask the value of the expression as follows:
Sigma Sigma Ni=1 Nj=1max (I, J) Sigma (I J)
The max (I, J) said the maximum values of I and j, sigma (I J) and I said about J.
For example, when N=2, by =1 (1), sigma sigma sigma (2) =1+2=3 (4) =1+2+4=7 shows that the answer should be 1 sigma (1 1)+2 (1 sigma 2 sigma (2)+2 1 sigma (2)+2 2) =27.
He found that the answer is a little big, so you just need to tell him the answer to 1000000007 of the value can be.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
main.cc