文件名称:cross-validation
- 所属分类:
- matlab例程
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2015-10-07
- 文件大小:
- 4kb
- 下载次数:
- 0次
- 提 供 者:
- liufe******
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
交叉验证(Cross-validation)主要用于建模应用中,例如PCR 、PLS 回归建模中。在给定的建模样本中,拿出大部分样本进行建模型,留小部分样本用刚建立的模型进行预报,并求这小部分样本的预报误差,记录它们的平方加和。这个过程一直进行,直到所有的样本都被预报了一次而且仅被预报一次。把每个样本的预报误差平方加和,称为PRESS(predicted Error Sum of Squares)-Cross-validation, sometimes called rotation estimation,[1][2][3] is a model validation technique for assessing how the results of a statistical analysis will generalize to an independent data set. It is mainly used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice. In a prediction problem, a model is usually given a dataset of known data on which training is run (training dataset), and a dataset of unknown data (or first seen data) against which the model is tested (testing dataset).[4] The goal of cross validation is to define a dataset to test the model in the training phase (i.e., the validation dataset), in order to limit problems like overfitting, give an insight on how the model will generalize to an independent dataset (i.e., an unknown dataset, for instance a real problem), etc.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
cross validation\adjust_wold.m
................\ch_pls.m
................\ch_plspred.m
................\ch_plspredh.m
................\f_test.m
................\kfold.m
................\lmocv.m
................\loocv.m
................\mcfactor.m
cross validation