文件名称:Transitive-Re-identification

下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。

介绍说明--下载内容均来自于网络,请自行研究使用

行人再识别。人再次鉴定的准确性可以显著提高给定一个训练集,演示了外表的变化与非重叠的两个摄像头。我们测试时是否能保持这种优势直接标注的训练集并非对所有现场camera-pairs可用。给定的训练集捕捉相机A和B之间的对应关系和不同的训练集捕捉相机B和C之间的对应关系,传递鉴定算法(TRID)建议提供了一个分类器(A,C)对外观。该方法是基于统计建模和使用一个边缘化的推理过程。这种方法可以显著减少注释工作固有的学习系统。-Person re-identification accuracy can be significantly improved given a training set that demonstrates changes in appearances associated with the two non-overlapping cameras involved. Here we test whether this advantage can be maintained when directly annotated training sets are not available for all camera-pairs at the site. Given the training sets capturing correspondences between cameras A and B and a different training set capturing correspondences between cameras B and C, the Transitive Re-IDentification algorithm (TRID) suggested here provides a classifier for (A,C) appearance pairs. The proposed method is based on statistical modeling and uses a marginalization process for the inference. This approach significantly reduces the annotation effort inherent in a learning system, which goes down O(N^2) to O(N), for a site containing N cameras. Moreover, when adding camera (N+1), only one inter-camera training set is required for establishing all correspondences. In our experiments w
(系统自动生成,下载前可以参看下载内容)

下载文件列表

文件名大小更新时间


TRID_BMVC2013_Code_Final_withoutImages\MATLAB Code
......................................\...........\batch_SAIVTSoft_DB_AdoptedForSimulation_folder_creation.m
......................................\...........\CalcIntg2.m
......................................\...........\ConvertNum2_kDigitStr2.m
......................................\...........\CreateSingleImageFeatureVector.m
......................................\...........\CreateSuperFVs.m
......................................\...........\disptime.m
......................................\...........\doTest_ICT.m
......................................\...........\doTest_TRID2.m
......................................\...........\doTrain_ICT.m
......................................\...........\doTrain_ICT_Naive.m
......................................\...........\FASTSVM_innerPredict.mexw32
......................................\...........\findIndImageInStruct.m
......................................\...........\GetSubIndForCamCombination.m
......................................\...........\ICT.m
......................................\...........\ICT_Naive.m
......................................\...........\libsvm.dll
......................................\...........\libsvmread.mexa64
......................................\...........\libsvmread.mexw32
......................................\...........\libsvmread.mexw32 3.11
......................................\...........\libsvmread.mexw64
......................................\...........\libsvmwrite.mexa64
......................................\...........\libsvmwrite.mexw32
......................................\...........\libsvmwrite.mexw32 3.11
......................................\...........\libsvmwrite.mexw64
......................................\...........\ListImagesForExperiment.mat
......................................\...........\main_with_gui.m
......................................\...........\mysvmpredict.m
......................................\...........\mysvmtrain.m
......................................\...........\new.mat
......................................\...........\normalize.m
......................................\...........\old.mat
......................................\...........\PrepareDataForCurrentExperiment.m
......................................\...........\RandomlySelect2.m
......................................\...........\ReadSAIVTSoftData2Cameras.m
......................................\...........\res.mat
......................................\...........\resNew.mat
......................................\...........\resOld.mat
......................................\...........\SAIVTSoft Average CMC [A B C]=[1 5 7] TestSetsCount=2.fig
......................................\...........\SAIVTSoft Average CMC [A B C]=[3 5 7] TestSetsCount=2.fig
......................................\...........\SAIVTSoftBio_CamSetUp.jpg
......................................\...........\SAIVTSoftBio_CamSetUp.png
......................................\...........\simulation_gui.fig
......................................\...........\simulation_gui.m
......................................\...........\structCombSubInd.mat
......................................\...........\superRandsample.m
......................................\...........\svmpredict 3.11.mexw64
......................................\...........\svm-predict.exe
......................................\...........\svmpredict.mexa64
......................................\...........\svmpredict.mexw32
......................................\...........\svmpredict.mexw32 3.11
......................................\...........\svmpredict.mexw64
......................................\...........\svm-scale.exe
......................................\...........\svm-toy.exe
......................................\...........\svmtrain 3.11.mexw64
......................................\...........\svm-train.exe
......................................\...........\svmtrain.mexa64
......................................\.........

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org