文件名称:Transitive-Re-identification
- 所属分类:
- 图形图像处理(光照,映射..)
- 资源属性:
- [Matlab] [源码]
- 上传时间:
- 2015-05-07
- 文件大小:
- 1.28mb
- 下载次数:
- 0次
- 提 供 者:
- 李*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
行人再识别。人再次鉴定的准确性可以显著提高给定一个训练集,演示了外表的变化与非重叠的两个摄像头。我们测试时是否能保持这种优势直接标注的训练集并非对所有现场camera-pairs可用。给定的训练集捕捉相机A和B之间的对应关系和不同的训练集捕捉相机B和C之间的对应关系,传递鉴定算法(TRID)建议提供了一个分类器(A,C)对外观。该方法是基于统计建模和使用一个边缘化的推理过程。这种方法可以显著减少注释工作固有的学习系统。-Person re-identification accuracy can be significantly improved given a training set that demonstrates changes in appearances associated with the two non-overlapping cameras involved. Here we test whether this advantage can be maintained when directly annotated training sets are not available for all camera-pairs at the site. Given the training sets capturing correspondences between cameras A and B and a different training set capturing correspondences between cameras B and C, the Transitive Re-IDentification algorithm (TRID) suggested here provides a classifier for (A,C) appearance pairs. The proposed method is based on statistical modeling and uses a marginalization process for the inference. This approach significantly reduces the annotation effort inherent in a learning system, which goes down O(N^2) to O(N), for a site containing N cameras. Moreover, when adding camera (N+1), only one inter-camera training set is required for establishing all correspondences. In our experiments w
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 | |
---|---|---|---|
| |||
TRID_BMVC2013_Code_Final_withoutImages\MATLAB Code | |||
......................................\...........\batch_SAIVTSoft_DB_AdoptedForSimulation_folder_creation.m | |||
......................................\...........\CalcIntg2.m | |||
......................................\...........\ConvertNum2_kDigitStr2.m | |||
......................................\...........\CreateSingleImageFeatureVector.m | |||
......................................\...........\CreateSuperFVs.m | |||
......................................\...........\disptime.m | |||
......................................\...........\doTest_ICT.m | |||
......................................\...........\doTest_TRID2.m | |||
......................................\...........\doTrain_ICT.m | |||
......................................\...........\doTrain_ICT_Naive.m | |||
......................................\...........\FASTSVM_innerPredict.mexw32 | |||
......................................\...........\findIndImageInStruct.m | |||
......................................\...........\GetSubIndForCamCombination.m | |||
......................................\...........\ICT.m | |||
......................................\...........\ICT_Naive.m | |||
......................................\...........\libsvm.dll | |||
......................................\...........\libsvmread.mexa64 | |||
......................................\...........\libsvmread.mexw32 | |||
......................................\...........\libsvmread.mexw32 3.11 | |||
......................................\...........\libsvmread.mexw64 | |||
......................................\...........\libsvmwrite.mexa64 | |||
......................................\...........\libsvmwrite.mexw32 | |||
......................................\...........\libsvmwrite.mexw32 3.11 | |||
......................................\...........\libsvmwrite.mexw64 | |||
......................................\...........\ListImagesForExperiment.mat | |||
......................................\...........\main_with_gui.m | |||
......................................\...........\mysvmpredict.m | |||
......................................\...........\mysvmtrain.m | |||
......................................\...........\new.mat | |||
......................................\...........\normalize.m | |||
......................................\...........\old.mat | |||
......................................\...........\PrepareDataForCurrentExperiment.m | |||
......................................\...........\RandomlySelect2.m | |||
......................................\...........\ReadSAIVTSoftData2Cameras.m | |||
......................................\...........\res.mat | |||
......................................\...........\resNew.mat | |||
......................................\...........\resOld.mat | |||
......................................\...........\SAIVTSoft | Average CMC | [A B C]=[1 5 7] | TestSetsCount=2.fig |
......................................\...........\SAIVTSoft | Average CMC | [A B C]=[3 5 7] | TestSetsCount=2.fig |
......................................\...........\SAIVTSoftBio_CamSetUp.jpg | |||
......................................\...........\SAIVTSoftBio_CamSetUp.png | |||
......................................\...........\simulation_gui.fig | |||
......................................\...........\simulation_gui.m | |||
......................................\...........\structCombSubInd.mat | |||
......................................\...........\superRandsample.m | |||
......................................\...........\svmpredict 3.11.mexw64 | |||
......................................\...........\svm-predict.exe | |||
......................................\...........\svmpredict.mexa64 | |||
......................................\...........\svmpredict.mexw32 | |||
......................................\...........\svmpredict.mexw32 3.11 | |||
......................................\...........\svmpredict.mexw64 | |||
......................................\...........\svm-scale.exe | |||
......................................\...........\svm-toy.exe | |||
......................................\...........\svmtrain 3.11.mexw64 | |||
......................................\...........\svm-train.exe | |||
......................................\...........\svmtrain.mexa64 | |||
......................................\......... |