文件名称:RBF
介绍说明--下载内容均来自于网络,请自行研究使用
RBF神经网络:rbf原理:所谓径向基函数(Radial Basis Function 简称 RBF),就是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数,可记作 k(||x-xc||),其作用往往是局部的,即当x远离xc时函数取值很小。最常用的径向基函数是高斯核函数,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中xc为核函数中心,σ为函数的宽度参数,控制了函数的径向作用范围。在RBF网络中,这两个参数往往是可调的。-RBF neural network: rbf principle: the so-called radial basis function (Radial Basis Function called RBF), is some kind of radially symmetric scalar function. Is usually defined as the space between any monotonic function to a central point x xc Euclidean distance, may be credited to k (|| x-xc ||), and its role is often partial, that is far the xc function when x The value is very small. The most commonly used is the Gaussian radial basis function kernel function, in the form of k (|| x-xc ||) = exp {- || x-xc || ^ 2/(2* σ) ^ 2)} where xc is Kernel center, σ is the width parameter of the function, the control function of the radial scope. In the RBF network, these two parameters are often adjustable.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
RBF8_7.m
RBF8_6.m