文件名称:final-code

  • 所属分类:
  • matlab例程
  • 资源属性:
  • [Matlab] [源码]
  • 上传时间:
  • 2014-08-18
  • 文件大小:
  • 952kb
  • 下载次数:
  • 0次
  • 提 供 者:
  • Dee****
  • 相关连接:
  • 下载说明:
  • 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。

介绍说明--下载内容均来自于网络,请自行研究使用

This paper presents a new approach to image segmentation using Pillar K-means algorithm. This

segmentation method includes a new mechanism for grouping the elements of high resolution images in order to

improve accuracy and reduce the computation time. The system uses K-means for image segmentation optimized by

the algorithm after Pillar. The Pillar algorithm considers the placement of pillars should be located as far from each

other to resist the pressure distribution of a roof, as same as the number of centroids between the data distribution. This

algorithm is able to optimize the K-means clustering for image segmentation in the aspects of accuracy and

computation time. This algorithm distributes all initial centroids according to the maximum cumulative distance metric.

This paper evaluates the proposed approach for image segmentation by comparing with K-means clustering

algorithm and Gaussian mixture model and the participation of RGB, HSV, HSL and CIELAB color spaces.

-This paper presents a new approach to image segmentation using Pillar K-means algorithm. This

segmentation method includes a new mechanism for grouping the elements of high resolution images in order to

improve accuracy and reduce the computation time. The system uses K-means for image segmentation optimized by

the algorithm after Pillar. The Pillar algorithm considers the placement of pillars should be located as far from each

other to resist the pressure distribution of a roof, as same as the number of centroids between the data distribution. This

algorithm is able to optimize the K-means clustering for image segmentation in the aspects of accuracy and

computation time. This algorithm distributes all initial centroids according to the maximum cumulative distance metric. 

This paper evaluates the proposed approach for image segmentation by comparing with K-means clustering

algorithm and Gaussian mixture model and the participation of RGB, HSV, HSL and CIELAB color spaces.


(系统自动生成,下载前可以参看下载内容)

下载文件列表





images\abnormal\chronic infarct with gliosis and cystic formation.jpg

......\........\chronic infarct.0001.jpg

......\........\cystic necrosis of tumor.0001.jpg

......\........\dilated lateral ventricels in normal pressure hydrocephalous.0001 - Copy.jpg

......\........\metastases.0017.jpg

......\normal\normal t2w brain 2nd patient.0006.jpg

......\......\normal t2w brain 2nd patient.0003.jpg

......\......\normal t2w brain 2nd patient.0004.jpg

......\......\normal t2w brain 2nd patient.0005.jpg

Extract_Feature.m

feature_extract_nnt_training.m

gui1.fig

gui1.m

net.mat

images\abnormal

......\normal

images

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org