文件名称:CaiDengcode
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
浙大蔡登,何晓飞写的降维,特征选择等机器学习的源码
包括:谱回归,降维,特征选择,主题模型,矩阵分解,稀疏编码,哈希,聚类,主动学习,矩阵学习。
是一个很好的机器学习源码资料。-cCaideng s code for Machine learning,include
Spectral regression : (a regression fr a mework for efficient dimensionality reduction)
Dimensionality reduction (Subspace learning)
Feature selection
Topic modeling and GMM
Matrix factorization
Sparse coding
Hashing
Clustering
Active learning
Ranking and Metric learning
包括:谱回归,降维,特征选择,主题模型,矩阵分解,稀疏编码,哈希,聚类,主动学习,矩阵学习。
是一个很好的机器学习源码资料。-cCaideng s code for Machine learning,include
Spectral regression : (a regression fr a mework for efficient dimensionality reduction)
Dimensionality reduction (Subspace learning)
Feature selection
Topic modeling and GMM
Matrix factorization
Sparse coding
Hashing
Clustering
Active learning
Ranking and Metric learning
(系统自动生成,下载前可以参看下载内容)
下载文件列表
CaiDengcode\bestMap.m
...........\constructKernel.m
...........\constructW.m
...........\CSRKDApredict.m
...........\CSRKDAtrain.m
...........\dijkstra.mexglx
...........\dijkstra.mexw32
...........\dijkstra.mexw64
...........\Eigenmap.m
...........\EMR.m
...........\EMRtest.m
...........\ep1R.mexw32
...........\ep1R.mexw64
...........\EuDist2.m
...........\GenSpatialSmoothRegularizer.m
...........\GenTwoNoisyCircle.m
...........\getargs.m
...........\GNMF.m
...........\GNMF_KL.m
...........\GNMF_KL_Multi.m
...........\GNMF_Multi.m
...........\GraphSC.m
...........\hungarian.m
...........\initFactor.m
...........\IsoP.m
...........\KDA.m
...........\KGE.m
...........\KLPP.m
...........\KPCA.m
...........\KSR.m
...........\KSR_caller.m
...........\LaplacianScore.m
...........\LapPLSI.m
...........\lars.m
...........\LCCF.m
...........\LCCF_Multi.m
...........\LCGMM.m
...........\LDA.m
...........\learn_basis.m
...........\learn_coefficients.m
...........\LeastR.m
...........\LGE.m
...........\litekmeans.m
...........\LPP.m
...........\LSC.m
...........\LSDA.m
...........\lsqr2.m
...........\LTM.m
...........\MAED.m
...........\MAEDseq.m
...........\MCFS_p.m
...........\mex_EMstep.mexw32
...........\mex_EMstep.mexw64
...........\mex_logL.mexw32
...........\mex_logL.mexw64
...........\mex_Pw_d.mexw32
...........\mex_Pw_d.mexw64
...........\MMP.m
...........\MutualInfo.m
...........\mySVD.m
...........\NormalizeFea.m
...........\NPE.m
...........\OLGE.m
...........\OLPP.m
...........\PCA.m
...........\readne.txt
...........\SCC.m
...........\SCCtest.m
...........\SDA.m
...........\sll_opts.m
...........\SparseCodingwithBasis.m
...........\SR.m
...........\SRDApredict.m
...........\SRDAtest.m
...........\SRDAtrain.m
...........\SRKDApredict.m
...........\SRKDAtest.m
...........\SRKDAtrain.m
...........\SR_caller.m
...........\TensorLGE.m
...........\TensorLPP.m
...........\TensorR_32x32.mat
...........\tfidf.m
...........\UKSRtest.m
...........\UKSRtrain.m
...........\USRtest.m
...........\USRtrain.m
CaiDengcode