文件名称:jiyumatlabyouhua
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
基于matlab的各种优化算法 包含 插值 函数逼近 矩阵特征值计算 等30来种优化算法-Various optimization algorithms based on matlab interpolation function approximation includes calculating eigenvalues of the matrix and other 30 kinds of optimization algorithms to
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于MATLAB的各种优化算法\基于MATLAB的各种优化算法\MATLAB.pdf
........................\........................\第10章 非线性方程组求解\DiffParam1.m
........................\........................\........................\DiffParam2.m
........................\........................\........................\mulBFS.m
........................\........................\........................\mulConj.m
........................\........................\........................\mulDamp.m
........................\........................\........................\mulDFP.m
........................\........................\........................\mulDiscNewton.m
........................\........................\........................\mulDNewton.m
........................\........................\........................\mulFastDown.m
........................\........................\........................\mulGSND.m
........................\........................\........................\mulGXF1.m
........................\........................\........................\mulGXF2.m
........................\........................\........................\mulMix.m
........................\........................\........................\mulNewton.m
........................\........................\........................\mulNewtonSOR.m
........................\........................\........................\mulNewtonStev.m
........................\........................\........................\mulNumYT.m
........................\........................\........................\mulRank1.m
........................\........................\........................\mulSimNewton.m
........................\........................\........................\mulStablePoint.m
........................\........................\........................\mulVNewton.m
........................\........................\........................\SOR.m
........................\........................\...1章 解线性方程组的直接法\conjgrad.m
........................\........................\............................\Crout.m
........................\........................\............................\Doolittle.m
........................\........................\............................\followup.m
........................\........................\............................\GaussJordanXQ.m
........................\........................\............................\GaussXQAllMain.m
........................\........................\............................\GaussXQByOrder.m
........................\........................\............................\GaussXQLineMain.m
........................\........................\............................\InvAddSide.m
........................\........................\............................\qrxq.m
........................\........................\............................\SymPos1.m
........................\........................\............................\SymPos2.m
........................\........................\............................\SymPos3.m
........................\........................\............................\Yesf.m
........................\........................\...2章 解线性方程组的迭代法\BGS.m
........................\........................\............................\BJ.m
........................\........................\............................\BSOR.m
........................\........................\............................\conjgrad.m
........................\........................\............................\crs.m
........................\........................\............................\fastdown.m
........................\........................\............................\gauseidel.m
........................\........................\............................\grs.m
........................\........................\............................\jacobi.m
........................\........................\............