文件名称:Genetic-and-Simulated-Annealing
介绍说明--下载内容均来自于网络,请自行研究使用
针对战区装备保障点动态选址问题的广义最大覆盖选址模型,综合分析传统的启发式算法全局、局部搜索中的
优缺点,提出一种基于BP神经网络的遗传模拟退火算法,并将其运用于战区装备保障点动态选址决策实际同题中,对该算法
进行了仿真研究,给出具体实例的仿真结果验证了该算法求解最优解的高效性以及运算的高收敛速度。-Considering the generalized maximal covering location model of dynamic locating on war
zone equipments support system,we synthetically analyses the virtues and disadvantages of conventional
total and partial searching algorithm,presents an algorithm based on BP neural network in genetic
algorithm and simulated annealing algorithm,
优缺点,提出一种基于BP神经网络的遗传模拟退火算法,并将其运用于战区装备保障点动态选址决策实际同题中,对该算法
进行了仿真研究,给出具体实例的仿真结果验证了该算法求解最优解的高效性以及运算的高收敛速度。-Considering the generalized maximal covering location model of dynamic locating on war
zone equipments support system,we synthetically analyses the virtues and disadvantages of conventional
total and partial searching algorithm,presents an algorithm based on BP neural network in genetic
algorithm and simulated annealing algorithm,
(系统自动生成,下载前可以参看下载内容)
下载文件列表
BP神经网络的遗传模拟退火算法动态选址仿真.pdf