文件名称:CBWH_IET_Computer-Vision
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
背景加权直方图算法(BWH)在[2]中提出了尝试
减少干扰的背景均值漂移跟踪的目标定位。然而,
在本文中,我们证明了权重分配给候选目标区域的像素
BWH是那些没有背景资料成正比,即不会引入BWH
任何新的信息,因为均值漂移迭代公式是不变的规模
改造砝码。然后,我们提出了一个校正BWH(CBWH)的公式
只转型的目标模式,但不是目标候选模型。 CBWH计划
可以有效地降低背景的干扰,在目标定位。实验
结果表明,CBWH可能会导致更快的收敛速度和更准确的定位比
通常的目标表示均值漂移跟踪。即使目标没有得到很好的初始化,
该算法仍然强劲跟踪的对象,这是很难实现由
传统的目标表示。-The background-weighted histogram (BWH) algorithm proposed in [2] attempts to
reduce the interference of background in target localization in mean shift tracking. However,
in this paper we prove that the weights assigned to pixels in the target candidate region by
BWH are proportional to those without background information, i.e. BWH does not introduce
any new information because the mean shift iteration formula is invariant to the scale
transformation of weights. We then propose a corrected BWH (CBWH) formula by
transforming only the target model but not the target candidate model. The CBWH scheme
can effectively reduce background’s interference in target localization. The experimental
results show that CBWH can lead to faster convergence and more accurate localization than
the usual target representation in mean shift tracking. Even if the target is not well initialized,
the proposed algorithm can still robustly track the object, which is hard to achieve by the
conventiona
减少干扰的背景均值漂移跟踪的目标定位。然而,
在本文中,我们证明了权重分配给候选目标区域的像素
BWH是那些没有背景资料成正比,即不会引入BWH
任何新的信息,因为均值漂移迭代公式是不变的规模
改造砝码。然后,我们提出了一个校正BWH(CBWH)的公式
只转型的目标模式,但不是目标候选模型。 CBWH计划
可以有效地降低背景的干扰,在目标定位。实验
结果表明,CBWH可能会导致更快的收敛速度和更准确的定位比
通常的目标表示均值漂移跟踪。即使目标没有得到很好的初始化,
该算法仍然强劲跟踪的对象,这是很难实现由
传统的目标表示。-The background-weighted histogram (BWH) algorithm proposed in [2] attempts to
reduce the interference of background in target localization in mean shift tracking. However,
in this paper we prove that the weights assigned to pixels in the target candidate region by
BWH are proportional to those without background information, i.e. BWH does not introduce
any new information because the mean shift iteration formula is invariant to the scale
transformation of weights. We then propose a corrected BWH (CBWH) formula by
transforming only the target model but not the target candidate model. The CBWH scheme
can effectively reduce background’s interference in target localization. The experimental
results show that CBWH can lead to faster convergence and more accurate localization than
the usual target representation in mean shift tracking. Even if the target is not well initialized,
the proposed algorithm can still robustly track the object, which is hard to achieve by the
conventiona
(系统自动生成,下载前可以参看下载内容)
下载文件列表
CBWH_IET_Computer Vision\CBWH_Demo.asv
........................\CBWH_Demo.m
........................\rgbPDF.asv
........................\rgbPDF.m
........................\rgbPDF_bg.m
........................\rgbTracking.m
........................\rgbTracking_BWH.m
........................\select.m
........................\test video\ball.avi
........................\..........\player.avi
........................\.racking result\trackingresult2.avi
........................\test video
........................\tracking result
CBWH_IET_Computer Vision