文件名称:Simulated-Annealing
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
由于K-means 聚类方法对遥感图像进行分类时,对训练样本的选取依赖性很大,容易陷入局部最优的陷阱的情况,本文提出利用模拟退化算法对K-means 的聚类进行优化以获得
全局最优解的分类新方案。并以多波段影像为例进行验证分析,结果表明该方法可行,收敛
结果优于K-means 聚类算法,分类精度相对传统的K-means 算法更高。-Because K-means clustering classification depend on the training sample selection,great easy to fall into local optimum, in this paper , using Simulated Annealing algorithm to optimize K-means cluster analysis to obtain the global best optimal solution of the classification of 20 the new program. And multi-band image as an example to verify the analysis results, showing that the method is feasible, convergence results are better than K-means clustering algorithm, classification accuracy compared to traditional K-means algorithm is higher
全局最优解的分类新方案。并以多波段影像为例进行验证分析,结果表明该方法可行,收敛
结果优于K-means 聚类算法,分类精度相对传统的K-means 算法更高。-Because K-means clustering classification depend on the training sample selection,great easy to fall into local optimum, in this paper , using Simulated Annealing algorithm to optimize K-means cluster analysis to obtain the global best optimal solution of the classification of 20 the new program. And multi-band image as an example to verify the analysis results, showing that the method is feasible, convergence results are better than K-means clustering algorithm, classification accuracy compared to traditional K-means algorithm is higher
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于模拟退火的k均值算法.pdf