文件名称:MATLAB_WITH_NUMERICAL_ANALYSIS
介绍说明--下载内容均来自于网络,请自行研究使用
数值分析里的matlab实现,包括了基本的插值函数等,-numerical analysis with matlab code
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB语言常用算法程序集
........................\MATLAB语言常用算法程序集(龚纯).pdf
........................\matlab数值计算程序目录.txt
........................\光盘的算法程序索引.xls
........................\第10章 非线性方程组求解
........................\........................\DiffParam1.m
........................\........................\DiffParam2.m
........................\........................\SOR.m
........................\........................\mulBFS.m
........................\........................\mulConj.m
........................\........................\mulDFP.m
........................\........................\mulDNewton.m
........................\........................\mulDamp.m
........................\........................\mulDiscNewton.m
........................\........................\mulFastDown.m
........................\........................\mulGSND.m
........................\........................\mulGXF1.m
........................\........................\mulGXF2.m
........................\........................\mulMix.m
........................\........................\mulNewton.m
........................\........................\mulNewtonSOR.m
........................\........................\mulNewtonStev.m
........................\........................\mulNumYT.m
........................\........................\mulRank1.m
........................\........................\mulSimNewton.m
........................\........................\mulStablePoint.m
........................\........................\mulVNewton.m
........................\第11章 解线性方程组的直接法
........................\............................\Crout.m
........................\............................\Doolittle.m
........................\............................\GaussJordanXQ.m
........................\............................\GaussXQAllMain.m
........................\............................\GaussXQByOrder.m
........................\............................\GaussXQLineMain.m
........................\............................\InvAddSide.m
........................\............................\SymPos1.m
........................\............................\SymPos2.m
........................\............................\SymPos3.m
........................\............................\Yesf.m
........................\............................\conjgrad.m
........................\............................\followup.m
........................\............................\qrxq.m
........................\第12章 解线性方程组的迭代法
........................\............................\BGS.m
........................\............................\BJ.m
........................\............................\BSOR.m
........................\............................\JOR.m
........................\............................\SOR.m
........................\............................\SSOR.m
........................\............................\conjgrad.m
........................\............................\crs.m
........................\............................\fastdown.m
........................\............................\gauseidel.m
........................\............................\grs.m
........................\............................\jacobi.m
........................\............................\preconjgrad.m
........................\............................\richason.m
........................\............................\rs.m
........................\............................\twostep.m
........................\第13章 随机数生成
........................\..................\AELDist.m
........................\..................\BGDist.m
........................\..................\BenuliDist.m
........................\..................\CauthyDist.m
........................\..................\CombineLinear.m
........................\..................\GaussDist.m
........................\..................\LaplaceDist.m
........................\..