文件名称:Adaptive-Online-Learning

介绍说明--下载内容均来自于网络,请自行研究使用

基于EKF的神经网络自适应在线学习算法,包含例子和文档。-We show that a hierarchical Bayesian modeling approach allows us to perform

regularization in sequential learning. We identify three inference

levels within this hierarchy: model selection, parameter estimation, and

noise estimation. In environments where data arrive sequentially, techniques

such as cross validation to achieve regularization or model selection

are not possible. The Bayesian approach, with extended Kalman filtering

at the parameter estimation level, allows for regularization within

a minimum variance fr a mework. A multilayer perceptron is used to generate

the extended Kalman filter nonlinear measurements mapping. We

describe several algorithms at the noise estimation level that allow us to

implement on-line regularization.We also show the theoretical links between

adaptive noise estimation in extended Kalman filtering, multiple

adaptive learning rates, and multiple smoothing regularization coefficients.
(系统自动生成,下载前可以参看下载内容)

下载文件列表

Adaptive Online Learning of Neural Networks with the EKF\ekfdemo1.m

........................................................\mlpekf.m

........................................................\mlpekfQ.m

........................................................\neuralNetEKF.pdf

Adaptive Online Learning of Neural Networks with the EKF

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度更多...
  • 请直接用浏览器下载本站内容,不要使用迅雷之类的下载软件,用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*主  题:
*内  容:
*验 证 码:

源码中国 www.ymcn.org