文件名称:matlab
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
用MATLAB编写的计算线性微分方程挺好的源码资料-MATLAB prepared by the calculation linear differential equation of good source material
(系统自动生成,下载前可以参看下载内容)
下载文件列表
matlab算法\光盘的算法程序索引.xls
..........\第10章 非线性方程组求解\DiffParam1.m
..........\........................\DiffParam2.m
..........\........................\mulBFS.m
..........\........................\mulConj.m
..........\........................\mulDamp.m
..........\........................\mulDFP.m
..........\........................\mulDiscNewton.m
..........\........................\mulDNewton.m
..........\........................\mulFastDown.m
..........\........................\mulGSND.m
..........\........................\mulGXF1.m
..........\........................\mulGXF2.m
..........\........................\mulMix.m
..........\........................\mulNewton.m
..........\........................\mulNewtonSOR.m
..........\........................\mulNewtonStev.m
..........\........................\mulNumYT.m
..........\........................\mulRank1.m
..........\........................\mulSimNewton.m
..........\........................\mulStablePoint.m
..........\........................\mulVNewton.m
..........\........................\SOR.m
..........\...1章 解线性方程组的直接法\conjgrad.m
..........\............................\Crout.m
..........\............................\Doolittle.m
..........\............................\followup.m
..........\............................\GaussJordanXQ.m
..........\............................\GaussXQAllMain.m
..........\............................\GaussXQByOrder.m
..........\............................\GaussXQLineMain.m
..........\............................\InvAddSide.m
..........\............................\qrxq.m
..........\............................\SymPos1.m
..........\............................\SymPos2.m
..........\............................\SymPos3.m
..........\............................\Yesf.m
..........\...2章 解线性方程组的迭代法\BGS.m
..........\............................\BJ.m
..........\............................\BSOR.m
..........\............................\conjgrad.m
..........\............................\crs.m
..........\............................\fastdown.m
..........\............................\gauseidel.m
..........\............................\grs.m
..........\............................\jacobi.m
..........\............................\JOR.m
..........\............................\preconjgrad.m
..........\............................\richason.m
..........\............................\rs.m
..........\............................\SOR.m
..........\............................\SSOR.m
..........\............................\twostep.m
..........\...3章 随机数生成\AELDist.m
..........\..................\BenuliDist.m
..........\..................\BGDist.m
..........\..................\CauthyDist.m
..........\..................\CombineLinear.m
..........\..................\GaussDist.m
..........\..................\LaplaceDist.m
..........\..................\MixMOD.m
..........\..................\MulMOD1.m
..........\..................\MulMOD2.m
..........\..................\PFQZ.m
..........\..................\PoisonDist.m
..........\..................\PowerDist.m
..........\..................\PrimeMOD.m
..........\..................\RelayDist.m
..........\..................\test.m
..........\..................\TwoDist.m
..........\..................\WBDist.m
..........\...4章 特殊函数计算\bessel.m
..........\....................\bessel2.m
..........\....................\besselm.m
..........\....................\besselm2.m
..........\....................\Beta.m
..........\....................\betap.m
..........\....................\CIx.m
..........\....................\EIx.m
..........\....................\EIx2.m
..........\....................\Ellipint1.m
..........\....................\Ellipint2.m
..........\....................\ErrFunc.m
..........\....................\factbygama.m
..........\....................\gamafun.m
..........\....................\gamap.m
..........\....................\IntGauss.m
..........\....................\IntGaussLager.m
..........\....................\IntSimpson.m
..........\......
..........\第10章 非线性方程组求解\DiffParam1.m
..........\........................\DiffParam2.m
..........\........................\mulBFS.m
..........\........................\mulConj.m
..........\........................\mulDamp.m
..........\........................\mulDFP.m
..........\........................\mulDiscNewton.m
..........\........................\mulDNewton.m
..........\........................\mulFastDown.m
..........\........................\mulGSND.m
..........\........................\mulGXF1.m
..........\........................\mulGXF2.m
..........\........................\mulMix.m
..........\........................\mulNewton.m
..........\........................\mulNewtonSOR.m
..........\........................\mulNewtonStev.m
..........\........................\mulNumYT.m
..........\........................\mulRank1.m
..........\........................\mulSimNewton.m
..........\........................\mulStablePoint.m
..........\........................\mulVNewton.m
..........\........................\SOR.m
..........\...1章 解线性方程组的直接法\conjgrad.m
..........\............................\Crout.m
..........\............................\Doolittle.m
..........\............................\followup.m
..........\............................\GaussJordanXQ.m
..........\............................\GaussXQAllMain.m
..........\............................\GaussXQByOrder.m
..........\............................\GaussXQLineMain.m
..........\............................\InvAddSide.m
..........\............................\qrxq.m
..........\............................\SymPos1.m
..........\............................\SymPos2.m
..........\............................\SymPos3.m
..........\............................\Yesf.m
..........\...2章 解线性方程组的迭代法\BGS.m
..........\............................\BJ.m
..........\............................\BSOR.m
..........\............................\conjgrad.m
..........\............................\crs.m
..........\............................\fastdown.m
..........\............................\gauseidel.m
..........\............................\grs.m
..........\............................\jacobi.m
..........\............................\JOR.m
..........\............................\preconjgrad.m
..........\............................\richason.m
..........\............................\rs.m
..........\............................\SOR.m
..........\............................\SSOR.m
..........\............................\twostep.m
..........\...3章 随机数生成\AELDist.m
..........\..................\BenuliDist.m
..........\..................\BGDist.m
..........\..................\CauthyDist.m
..........\..................\CombineLinear.m
..........\..................\GaussDist.m
..........\..................\LaplaceDist.m
..........\..................\MixMOD.m
..........\..................\MulMOD1.m
..........\..................\MulMOD2.m
..........\..................\PFQZ.m
..........\..................\PoisonDist.m
..........\..................\PowerDist.m
..........\..................\PrimeMOD.m
..........\..................\RelayDist.m
..........\..................\test.m
..........\..................\TwoDist.m
..........\..................\WBDist.m
..........\...4章 特殊函数计算\bessel.m
..........\....................\bessel2.m
..........\....................\besselm.m
..........\....................\besselm2.m
..........\....................\Beta.m
..........\....................\betap.m
..........\....................\CIx.m
..........\....................\EIx.m
..........\....................\EIx2.m
..........\....................\Ellipint1.m
..........\....................\Ellipint2.m
..........\....................\ErrFunc.m
..........\....................\factbygama.m
..........\....................\gamafun.m
..........\....................\gamap.m
..........\....................\IntGauss.m
..........\....................\IntGaussLager.m
..........\....................\IntSimpson.m
..........\......