文件名称:RSC
介绍说明--下载内容均来自于网络,请自行研究使用
强壮的人脸识别系统,发表于cvpr2011年,程序是应用matlab实现-Recently the sparse representation (or coding) based classifi cation (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as
a sparse linear combination of the training samples, and
the representation fi delity is measured by the 2-norm or
1-norm of coding residual. Such a sparse coding model
actually assumes that the coding residual follows Gaus-
sian or Laplacian distribution, which may not be accurate
enough to describe the coding errors in practice. In this
paper, we propose a new scheme, namely the robust sparse
coding (RSC), by modeling the sparse coding as a sparsity-
constrained robust regression problem. The RSC seeks for
the MLE (maximum likelihood estimation) solution of the
sparse coding problem, and it is much more robust to out-
liers (e.g., occlusions, corruptions, etc.) than SRC. An
effi cient iteratively reweighted sparse coding algorithm is
proposed to solve the RSC model. Extensive
a sparse linear combination of the training samples, and
the representation fi delity is measured by the 2-norm or
1-norm of coding residual. Such a sparse coding model
actually assumes that the coding residual follows Gaus-
sian or Laplacian distribution, which may not be accurate
enough to describe the coding errors in practice. In this
paper, we propose a new scheme, namely the robust sparse
coding (RSC), by modeling the sparse coding as a sparsity-
constrained robust regression problem. The RSC seeks for
the MLE (maximum likelihood estimation) solution of the
sparse coding problem, and it is much more robust to out-
liers (e.g., occlusions, corruptions, etc.) than SRC. An
effi cient iteratively reweighted sparse coding algorithm is
proposed to solve the RSC model. Extensive
(系统自动生成,下载前可以参看下载内容)
下载文件列表
RSC\baboon.tif
...\Demo_RSC_AR_disguise.m
...\Demo_RSC_AR_disguise2.m
...\Demo_RSC_FR_noocclusion.asv
...\Demo_RSC_FR_noocclusion.m
...\Demo_RSC_Random_Corruption.asv
...\Demo_RSC_Random_Corruption.m
...\Demo_RSC_Random_Occlusion.asv
...\Demo_RSC_Random_Occlusion.m
...\l1_ls_matlab\@partialDCT\ctranspose.m
...\............\...........\mtimes.m
...\............\...........\partialDCT.m
...\............\find_lambdamax_l1_ls.m
...\............\find_lambdamax_l1_ls_nonneg.m
...\............\l1_ls.m
...\............\l1_ls_nonneg.m
...\............\l1_ls_usrguide.pdf
...\............\operator_example.m
...\............\README.TXT
...\............\simple_example.m
...\rand_w_h.mat
...\ReadMe.txt
...\RSC_CVPR11.pdf
...\utilities\Eigenface_f.m
...\.........\Random_Block_Occlu.asv
...\.........\Random_Block_Occlu.m
...\.........\Random_Pixel_Crop.asv
...\.........\Random_Pixel_Crop.m
...\.........\RSC.m
...\.........\Weight_M_update.asv
...\l1_ls_matlab\@partialDCT
...\database
...\l1_ls_matlab
...\utilities
RSC
...\Demo_RSC_AR_disguise.m
...\Demo_RSC_AR_disguise2.m
...\Demo_RSC_FR_noocclusion.asv
...\Demo_RSC_FR_noocclusion.m
...\Demo_RSC_Random_Corruption.asv
...\Demo_RSC_Random_Corruption.m
...\Demo_RSC_Random_Occlusion.asv
...\Demo_RSC_Random_Occlusion.m
...\l1_ls_matlab\@partialDCT\ctranspose.m
...\............\...........\mtimes.m
...\............\...........\partialDCT.m
...\............\find_lambdamax_l1_ls.m
...\............\find_lambdamax_l1_ls_nonneg.m
...\............\l1_ls.m
...\............\l1_ls_nonneg.m
...\............\l1_ls_usrguide.pdf
...\............\operator_example.m
...\............\README.TXT
...\............\simple_example.m
...\rand_w_h.mat
...\ReadMe.txt
...\RSC_CVPR11.pdf
...\utilities\Eigenface_f.m
...\.........\Random_Block_Occlu.asv
...\.........\Random_Block_Occlu.m
...\.........\Random_Pixel_Crop.asv
...\.........\Random_Pixel_Crop.m
...\.........\RSC.m
...\.........\Weight_M_update.asv
...\l1_ls_matlab\@partialDCT
...\database
...\l1_ls_matlab
...\utilities
RSC