文件名称:PiCalculator
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
这个算法是平方收敛的(每次迭代有效位数增加一倍),
这样要求到Q位有效数字,就至少要log2Q+1次迭代
显然,这种计算是要高精度表示的,
我所用的算法就是普通的高精度加减乘除
加减是O(n)的,时间花费很少。
乘除是O(n2)的,主要的时间花费都在这上面。
而由这个算法中可以看到,bn的计算需要开根号。
这里有两种开根号的办法:
①用初中教我们的方法,每次开两位根号,用除法减掉,
这样所需时间为n2·n/2=O(n3),不可忍受!
②用牛顿迭代法。
即
x0=任意正数,
xn+1=(xn+a/xn)/2
同样,这个算法也是平方收敛的。
其中除法是O(n2)的
故还是需要O(n2log2n)的时间
-Square convergence of the algorithm is (each iteration doubles the effective number of bits),
Such a request to the Q digits to at least log2Q 1 iterations
Obviously, this calculation is expressed to high accuracy,
The algorithm I used is the ordinary high-precision addition, subtraction
Addition and subtraction is O (n), the time spent very little.
Multiplication and division is O (n2), mainly time spent in this way.
By this algorithm can be seen, bn square root calculation needs.
There are two ways to open root:
① The middle school to teach our method, each time to open the two radicals, with the division to lose,
This time is n2 · n/2 = O (n3), can not stand it!
② The Newton iteration.
That
x0 = any positive number,
xn 1 = (xn a/xn)/2
Similarly, the square is also the convergence of the algorithm.
One division is O (n2) of the
It still needs O (n2log2n) time
这样要求到Q位有效数字,就至少要log2Q+1次迭代
显然,这种计算是要高精度表示的,
我所用的算法就是普通的高精度加减乘除
加减是O(n)的,时间花费很少。
乘除是O(n2)的,主要的时间花费都在这上面。
而由这个算法中可以看到,bn的计算需要开根号。
这里有两种开根号的办法:
①用初中教我们的方法,每次开两位根号,用除法减掉,
这样所需时间为n2·n/2=O(n3),不可忍受!
②用牛顿迭代法。
即
x0=任意正数,
xn+1=(xn+a/xn)/2
同样,这个算法也是平方收敛的。
其中除法是O(n2)的
故还是需要O(n2log2n)的时间
-Square convergence of the algorithm is (each iteration doubles the effective number of bits),
Such a request to the Q digits to at least log2Q 1 iterations
Obviously, this calculation is expressed to high accuracy,
The algorithm I used is the ordinary high-precision addition, subtraction
Addition and subtraction is O (n), the time spent very little.
Multiplication and division is O (n2), mainly time spent in this way.
By this algorithm can be seen, bn square root calculation needs.
There are two ways to open root:
① The middle school to teach our method, each time to open the two radicals, with the division to lose,
This time is n2 · n/2 = O (n3), can not stand it!
② The Newton iteration.
That
x0 = any positive number,
xn 1 = (xn a/xn)/2
Similarly, the square is also the convergence of the algorithm.
One division is O (n2) of the
It still needs O (n2log2n) time
(系统自动生成,下载前可以参看下载内容)
下载文件列表
sqrt2.dat
Extended.c
Extended.c