文件名称:ANN
介绍说明--下载内容均来自于网络,请自行研究使用
ann matlab neural network
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
ANN\Adaptive Filters 10 | ||
...\....................\Adaptive Filter Example.m | ||
...\....................\Adaptive Filter Example1.m | ||
...\....................\Adaptive Noise Cancellation.m | ||
...\Application Example | ||
...\...................\alphabet 1.m | ||
...\...................\alphabet 2.m | ||
...\...................\Elman 2.m | ||
...\...................\Elman networks 1.m | ||
...\...................\Linear Filter.m | ||
...\Backpropagation 5 | ||
...\..................\Automated Regularization (trainbr).m | ||
...\..................\Batch Gradient Descent (traingd).m | ||
...\..................\Batch Gradient Descent with Momentum (traingdm.m | ||
...\..................\feedfor.m | ||
...\..................\Fletcher-Reeves Update (traincgf).m | ||
...\..................\Levenberg-Marquardt (trainlm).m | ||
...\..................\Modified Performance Function.m | ||
...\..................\One Step Secant Algorithm (trainoss).m | ||
...\..................\Polak-Ribi俽e Update (traincgp).m | ||
...\..................\Powell-Beale Restarts (traincgb).m | ||
...\..................\Quasi-Newton Algorithms (trainbgf).m | ||
...\..................\Resilient Backpropagation (trainrp).m | ||
...\..................\Sample Training Session.m | ||
...\..................\Scaled Conjugate Gradient (trainscg).m | ||
...\..................\Variable Learning Rate (traingda | traingdx).m | |
...\Linear Filters 4 | ||
...\.................\Creating a Linear Neuron (newlin).m | ||
...\.................\Linear Classification (train).m | ||
...\.................\Linear System Design (newlind).m | ||
...\.................\net 5.m | ||
...\.................\newlin1.m | ||
...\.................\Tapped Delay Line.m | ||
...\.................\Too Large a Learning Rate.m | ||
...\Neuron Model 2 | ||
...\...............\Batch Training With Dynamic Networks.m | ||
...\...............\Batch Training with Static Networks.asv | ||
...\...............\Batch Training with Static Networks.m | ||
...\...............\Example.m | ||
...\...............\Incremental Training with Dynamic Networks.m | ||
...\...............\Incremental Training with Static N EXA.asv | ||
...\...............\Incremental Training with Static N EXA.m | ||
...\...............\Incremental Training with Static Networks 2.m | ||
...\...............\Incremental Training with Static Networks 3.m | ||
...\...............\Simulation With Concurrent Inputs in a Dynamic Network.m | ||
...\...............\Simulation With Concurrent Inputs in a Static Network.m | ||
...\...............\Simulation With Sequential Inputs in a Dynamic Network.m | ||
...\Perceptrons 3 | ||
...\..............\a.m | ||
...\..............\Normalized Perceptron Rule.m | ||
...\..............\Outliers and the Normalized Perceptron Rule.m | ||
...\..............\perceptron 2.m | ||
...\..............\perceptron 3.asv | ||
...\..............\perceptron 3.m | ||
...\..............\perceptron 4.asv | ||
...\..............\perceptron 4.m | ||
...\..............\perceptron limitation.m | ||
...\..............\perseptron 1.m | ||
...\..............\simulat perceptron.m | ||
...\Radial Basis Networks 7 | ||
...\........................\Design (newpnn).m | ||
...\........................\GRNN Function Approximation.m | ||
...\........................\PNN Classification.m | ||
...\Recurrent 9 | ||
...\............\Creating an Elman Network (newelm).m | ||
...\............\Design (newhop).m | ||
...\............\Example.m | ||
...\............\Hopfield Three Neuron Design.m | ||
...\Self-Organizing 8 | ||
...\..................\Competitive Learning.m | ||
...\..................\Creating a Self Organizing MAP Neural Network.m | ||
...\..................\Creating an LVQ Network (newlvq).m | ||
...\..................\One-Dimensional Self-organizing Map.m | ||
...\..................\self 0.m | ||
...\..................\self 1.m | ||
...\..................\som.m | ||
...\..................\Two-Dimensional Self-organizing Map.m |