文件名称:MSP430FFT
- 所属分类:
- 单片机(51,AVR,MSP430等)
- 资源属性:
- [C/C++] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 149kb
- 下载次数:
- 0次
- 提 供 者:
- y*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
下载
别用迅雷、360浏览器下载。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
如迅雷强制弹出,可右键点击选“另存为”。
失败请重下,重下不扣分。
介绍说明--下载内容均来自于网络,请自行研究使用
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于MSP430的FFT精简算法\fft_new\ascii_tab.c
.......................\.......\config.h
.......................\.......\Debug\Exe\simulate.d43
.......................\.......\.....\Obj\ascii_tab.r43
.......................\.......\.....\...\fft.r43
.......................\.......\.....\...\gui.r43
.......................\.......\.....\...\lcd.r43
.......................\.......\.....\...\main.r43
.......................\.......\.....\...\simulate.pbd
.......................\.......\fft.c
.......................\.......\fft.h
.......................\.......\gui.c
.......................\.......\gui.h
.......................\.......\lcd.c
.......................\.......\lcd.h
.......................\.......\main.c
.......................\.......\Release\Obj\ascii_tab.r43
.......................\.......\.......\...\fft.r43
.......................\.......\.......\...\gui.r43
.......................\.......\.......\...\lcd.r43
.......................\.......\.......\...\main.r43
.......................\.......\.......\...\simulate.pbd
.......................\.......\settings\simulate.cspy.bat
.......................\.......\........\simulate.dbgdt
.......................\.......\........\simulate.dni
.......................\.......\........\simulate.wsdt
.......................\.......\simulate.dep
.......................\.......\simulate.ewd
.......................\.......\simulate.ewp
.......................\.......\simulate.eww
.......................\使用说明请参看右侧注释====〉〉.txt
.......................\fft_new\Debug\Exe
.......................\.......\.....\List
.......................\.......\.....\Obj
.......................\.......\Release\Exe
.......................\.......\.......\List
.......................\.......\.......\Obj
.......................\.......\Debug
.......................\.......\Release
.......................\.......\settings
.......................\fft_new
基于MSP430的FFT精简算法
.......................\.......\config.h
.......................\.......\Debug\Exe\simulate.d43
.......................\.......\.....\Obj\ascii_tab.r43
.......................\.......\.....\...\fft.r43
.......................\.......\.....\...\gui.r43
.......................\.......\.....\...\lcd.r43
.......................\.......\.....\...\main.r43
.......................\.......\.....\...\simulate.pbd
.......................\.......\fft.c
.......................\.......\fft.h
.......................\.......\gui.c
.......................\.......\gui.h
.......................\.......\lcd.c
.......................\.......\lcd.h
.......................\.......\main.c
.......................\.......\Release\Obj\ascii_tab.r43
.......................\.......\.......\...\fft.r43
.......................\.......\.......\...\gui.r43
.......................\.......\.......\...\lcd.r43
.......................\.......\.......\...\main.r43
.......................\.......\.......\...\simulate.pbd
.......................\.......\settings\simulate.cspy.bat
.......................\.......\........\simulate.dbgdt
.......................\.......\........\simulate.dni
.......................\.......\........\simulate.wsdt
.......................\.......\simulate.dep
.......................\.......\simulate.ewd
.......................\.......\simulate.ewp
.......................\.......\simulate.eww
.......................\使用说明请参看右侧注释====〉〉.txt
.......................\fft_new\Debug\Exe
.......................\.......\.....\List
.......................\.......\.....\Obj
.......................\.......\Release\Exe
.......................\.......\.......\List
.......................\.......\.......\Obj
.......................\.......\Debug
.......................\.......\Release
.......................\.......\settings
.......................\fft_new
基于MSP430的FFT精简算法