文件名称:1.5
- 所属分类:
- C#编程
- 资源属性:
- [Windows] [Visual C] [源码]
- 上传时间:
- 2012-11-26
- 文件大小:
- 8kb
- 下载次数:
- 0次
- 提 供 者:
- 刘*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
编程模拟抛硬币所得正面的频率图。假设每次抛10次为一事件,
记录每次得到正面的次数,共抛掷100000次,计算得到正面次数的概率发布,并绘图输出结果。
思路:数值概率算法常用于数值问题的求解,此类算法所得的往往是近似解,且近似解的精度
随计算时间的增加而不断提高,得到一定精度近似解就可以满足问题要求。-Simulation programming coins thrown from the frequency of a positive map. The assumption that each throw is a 10 events, recorded the number of positive, throwing a total of 100000 times, calculate the probability of a positive number of releases, and graphics output. Ideas: the probability of numerical algorithms are commonly used in the numerical solution of the problem, such algorithms are often derived from the approximate solution, and the accuracy of the approximate solution with the increase in computing time and increasing accuracy of the approximate solution to some problem on the requirements to meet.
记录每次得到正面的次数,共抛掷100000次,计算得到正面次数的概率发布,并绘图输出结果。
思路:数值概率算法常用于数值问题的求解,此类算法所得的往往是近似解,且近似解的精度
随计算时间的增加而不断提高,得到一定精度近似解就可以满足问题要求。-Simulation programming coins thrown from the frequency of a positive map. The assumption that each throw is a 10 events, recorded the number of positive, throwing a total of 100000 times, calculate the probability of a positive number of releases, and graphics output. Ideas: the probability of numerical algorithms are commonly used in the numerical solution of the problem, such algorithms are often derived from the approximate solution, and the accuracy of the approximate solution with the increase in computing time and increasing accuracy of the approximate solution to some problem on the requirements to meet.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
模拟抛硬币所得正面的频率图
..........................\6_60.cpp
..........................\6_60.dsp
..........................\6_60.dsw
..........................\6_60.ncb
..........................\6_60.opt
..........................\6_60.plg
..........................\6_60.cpp
..........................\6_60.dsp
..........................\6_60.dsw
..........................\6_60.ncb
..........................\6_60.opt
..........................\6_60.plg