文件名称:hopfild1
- 所属分类:
- 其它资源
- 资源属性:
- [Windows] [Visual C] [Basic/ASP] [源码]
- 上传时间:
- 2008-10-13
- 文件大小:
- 11.15kb
- 下载次数:
- 0次
- 提 供 者:
- 韵*
- 相关连接:
- 无
- 下载说明:
- 别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容均来自于网络,请自行研究使用
Hopfield 网——擅长于联想记忆与解迷路 实现H网联想记忆的关键,是使被记忆的模式样本对应网络能量函数的极小值。 设有M个N维记忆模式,通过对网络N个神经元之间连接权 wij 和N个输出阈值θj的设计,使得: 这M个记忆模式所对应的网络状态正好是网络能量函数的M个极小值。 比较困难,目前还没有一个适应任意形式的记忆模式的有效、通用的设计方法。 H网的算法 1)学习模式——决定权重 想要记忆的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 则任意两个神经元j、i间的权重: wij=∑ap(i)ap(j),p=1…p; P:模式的总数 ap(s):第p个模式的第s个要素(-1或1) wij:第j个神经元与第i个神经元间的权重 i = j时,wij=0,即各神经元的输出不直接返回自身。 2)想起模式: 神经元输出值的初始化 想起时,一般是未知的输入。设xi(0)为未知模式的第i个要素(-1或1) 将xi(0)作为相对应的神经元的初始值,其中,0意味t=0。 反复部分:对各神经元,计算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神经元总数 f()--Sgn() θi—神经元i发火阈值 反复进行,直到各个神经元的输出不再变化。-Hopfield network -- good at associative memory solution with the realization of lost H associative memory networks, are key to bringing the memory model samples corresponding network energy function of the minimum. With M-N-dimensional memory model, the network N neurons connect between right wij and N output threshold j design makes : M-mode memory corresponding to the network is a state network energy function is the M-000 minimum. More difficult, it is not an arbitrary form of adaptation memory model of effective, common design methods. H network algorithm 1) mode of learning -- decision weights want memory model, with 1 and 2 of the value of a model, said : -1, 1, 1, 1 ,1,1, ... in general : two were arbitrary neuron j i weights between : wij ap = (i) ap (j), p = 1 ... p; P : The tot
(系统自动生成,下载前可以参看下载内容)
下载文件列表
压缩包 : 962527hopfild1.rar 列表 hopfild1\hopfild1.vbp hopfild1\hopfild1.vbw hopfild1\login.frm hopfild1\Module1.bas hopfild1\prepare.frm hopfild1\process.frm hopfild1\process.log hopfild1\run.frm hopfild1\test.frm hopfild1\工程1.vbw hopfild1\新建 文本文档.txt hopfild1\组1.vbg hopfild1