文件名称:PCA+mnist
介绍说明--下载内容均来自于网络,请自行研究使用
基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。
经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set.
After PCA dimensionality reduction, the final KNN achieved a classification accuracy of over 97% in a 100-dimensional feature space.)
经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set.
After PCA dimensionality reduction, the final KNN achieved a classification accuracy of over 97% in a 100-dimensional feature space.)
相关搜索: PCA降维;KNN分类;mnist手写体
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
pca.py | 2057 | 2020-10-17 |
t10k-images-idx3-ubyte.gz | 1648877 | 2018-10-10 |
t10k-labels-idx1-ubyte.gz | 4542 | 2018-10-10 |
train-images-idx3-ubyte.gz | 9912422 | 2018-10-10 |
train-labels-idx1-ubyte.gz | 28881 | 2018-10-10 |