文件名称:Char-RNN-PyTorch-master
介绍说明--下载内容均来自于网络,请自行研究使用
# Char-RNN-PyTorch
使用字符级别的RNN进行文本生成,使用PyTorch框架。[Gluon实现]
## Requirements
- PyTorch 0.2
- numpy
## Basic Usage
如果希望训练网络,使用如下的代码
```bash
python main.py \
--state train \
--txt './data/poetry.txt' \ # 训练用的txt文本
--batch 128 \ # batch_size
--epoch 1000 \
--len 100 \ # 输入RNN的序列长度
--max_vocab 5000 \ # 最大的字符数量
--embed 512 \ # 词向量的维度
--hidden 512 \ # 网络的输出维度
--n_layer 2 \ # RNN的层数
--dropout 0.5
```
如果希望使用训练好的网络进行文本生成,使用下面的代码
```bash
python main.py \
--state eval \
--begin '我' \ # 生成文本的开始,可以是一个字符,也可以一段话
--pred_len 100 \ # 希望生成文本的长度
--checkpoint './checkpoint/model_100.pth' # 读取训练模型的位置
```(# Char-RNN-PyTorch
Use the character level RNN for text generation, using the PyTorch fr a mework. [Gluon
## Requirements
- PyTorch 0.2
- numpy
## Basic Usage
If you want to train the network, use the following code
```bash
Python main.py \
--state train \
TXT text --txt'./data/poetry.txt'\ # for training
--batch 128, batch_size #
--epoch 1000 \
The length of the sequence --len 100 \ # input RNN
--max_vocab 5000, # maximum number of characters
--embed 512 \ # word vector dimension
The output dimension --hidden 512 \ # network
--n_layer 2 # \ RNN layers
--dropout 0.5
.
If you want to use a trained network for text generation, use the following code
```bash
Python main.py \
--state Eval \
I \ '--begin' # generated text, can be a character, can also be a paragraph
--pred_len 100, # want to generate text length
--checkpoint'./checkpoint/model_100.pth'# reading training model position
.)
使用字符级别的RNN进行文本生成,使用PyTorch框架。[Gluon实现]
## Requirements
- PyTorch 0.2
- numpy
## Basic Usage
如果希望训练网络,使用如下的代码
```bash
python main.py \
--state train \
--txt './data/poetry.txt' \ # 训练用的txt文本
--batch 128 \ # batch_size
--epoch 1000 \
--len 100 \ # 输入RNN的序列长度
--max_vocab 5000 \ # 最大的字符数量
--embed 512 \ # 词向量的维度
--hidden 512 \ # 网络的输出维度
--n_layer 2 \ # RNN的层数
--dropout 0.5
```
如果希望使用训练好的网络进行文本生成,使用下面的代码
```bash
python main.py \
--state eval \
--begin '我' \ # 生成文本的开始,可以是一个字符,也可以一段话
--pred_len 100 \ # 希望生成文本的长度
--checkpoint './checkpoint/model_100.pth' # 读取训练模型的位置
```(# Char-RNN-PyTorch
Use the character level RNN for text generation, using the PyTorch fr a mework. [Gluon
## Requirements
- PyTorch 0.2
- numpy
## Basic Usage
If you want to train the network, use the following code
```bash
Python main.py \
--state train \
TXT text --txt'./data/poetry.txt'\ # for training
--batch 128, batch_size #
--epoch 1000 \
The length of the sequence --len 100 \ # input RNN
--max_vocab 5000, # maximum number of characters
--embed 512 \ # word vector dimension
The output dimension --hidden 512 \ # network
--n_layer 2 # \ RNN layers
--dropout 0.5
.
If you want to use a trained network for text generation, use the following code
```bash
Python main.py \
--state Eval \
I \ '--begin' # generated text, can be a character, can also be a paragraph
--pred_len 100, # want to generate text length
--checkpoint'./checkpoint/model_100.pth'# reading training model position
.)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
Char-RNN-PyTorch-master | ||
Char-RNN-PyTorch-master\.gitignore | 37 | 2017-09-09 |
Char-RNN-PyTorch-master\CharRNN.py | 1236 | 2017-09-09 |
Char-RNN-PyTorch-master\README.md | 1827 | 2017-09-09 |
Char-RNN-PyTorch-master\data | ||
Char-RNN-PyTorch-master\data\jay.txt | 183181 | 2017-09-09 |
Char-RNN-PyTorch-master\data\poetry.txt | 2683016 | 2017-09-09 |
Char-RNN-PyTorch-master\data_utils.py | 2627 | 2017-09-09 |
Char-RNN-PyTorch-master\main.py | 5298 | 2017-09-09 |