文件名称:FR
介绍说明--下载内容均来自于网络,请自行研究使用
共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。-The Conjugate Gradient method is a method between the steepest descent method and the Newton method. It only needs to use the first derivative information, but overcomes the shortcomings of the steepest descent method and avoids the need for the Newton method to store And the calculation of Hesse matrix and the inverse of the shortcomings, conjugate gradient method is not only to solve large-scale linear equations one of the most useful methods, but also solution for large-scale nonlinear optimization of one of the most effective algorithm. In a variety of optimization algorithms, conjugate gradient method is a very important one. The advantage is that the required storage capacity is small, with step convergence, high stability, and does not require any external parameters.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Golden_section.m
grad.m
ex04_13062324.m
FR_CONJUGATE.m